Publications by authors named "Daniel Perez-Rapela"

Objective: Automatic emergency braking systems with pedestrian detection (PAEB) are effective at preventing pedestrian crashes, but the safety benefits are not observed at night. This study used the Insurance Institute for Highway Safety (IIHS) PAEB test data to characterize PAEB responses in different lighting conditions and for different rated systems.

Methods: Data from 6,919 IIHS PAEB tests were retrieved from IIHS databases.

View Article and Find Full Text PDF

Researchers can estimate the potential safety benefits of front crash prevention (FCP) systems by simulating system performance in rear-end crash scenarios reported to police or captured during naturalistic driving. Data to support assumptions about FCP systems in production vehicles, particularly automatic emergency braking (AEB), are limited. This study used detailed information from the Insurance Institute for Highway Safety's (IIHS's) FCP evaluation to characterize interventions in vehicles that performed well (superior-rated vehicles) and those that did not perform as well (basic/advanced-rated vehicles) when approaching a stationary surrogate vehicle on a test track at 20 and 40 km/h, and estimated performance in similar conditions at higher speeds.

View Article and Find Full Text PDF

Objective: Automobile booster seats are intended to improve belt fit for children that are too large for a harness-style child restraint, but not yet big enough to fit properly in an adult seat belt. Our objective was to prospectively study the relationship between booster seat design and interaction with the seat belt (specifically, submarining risk) for a child occupant using computer simulation of automobile crash events.

Methods: Frontal-impact simulations were performed with a 6-year-old child human body model.

View Article and Find Full Text PDF

Computational human body models (HBMs) are important tools for predicting human biomechanical responses under automotive crash environments. In many scenarios, the prediction of the occupant response will be improved by incorporating active muscle control into the HBMs to generate biofidelic kinematics during different vehicle maneuvers. In this study, we have proposed an approach to develop an active muscle controller based on reinforcement learning (RL).

View Article and Find Full Text PDF

The use of standardized anthropomorphic test devices and test conditions prevent current vehicle development and safety assessments from capturing the breadth of variability inherent in real-world occupant responses. This study introduces a methodology that overcomes these limitations by enabling the assessment of occupant response while accounting for sources of human- and non-human-related variability. Although the methodology is generic in nature, this study explores the methodology in its application to human response in far-side motor vehicle crashes as an example.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research suggests that seatbelts alone may not be sufficient during far-side impacts, prompting the need for additional safety measures.
  • This study tested a new airbag designed specifically for far-side impacts to see how well it protects occupants compared to tests without it.
  • Results showed that while the airbag reduced injury severity in test subjects, the WorldSID (a crash test dummy) struggled to accurately reflect certain injury risks, indicating limitations in its evaluation capabilities for new safety tech.
View Article and Find Full Text PDF

Far-side kinematics and injury are influenced by the occupant environment. The goal of the present study was to evaluate in-vehicle human far-side kinematics, kinetics and injury and to assess the ability of the WorldSID to represent them. A series of tests with five Post-Mortem Human Subjects and the WorldSID were conducted in a vehicle-based sled test environment.

View Article and Find Full Text PDF

Self-driving technology will bring novelty in occupant seating choices and vehicle interior design. Thus, vehicle safety systems may be challenged to protect occupants over a wider range of potential postures and seating choices. This study aims to investigate the effects of occupant size, seat recline, and knee bolster position on submarining risk and injury prediction metrics for reclined occupants in frontal crashes.

View Article and Find Full Text PDF