Here, we provide a protocol for the systematic screening of protein-protein interactions mediated by short linear motifs using the Protein Interaction Screen on a peptide Matrix (PrISMa) technique. We describe how to pull down interacting proteins in a parallelized manner and identify them by mass spectrometry. Finally, we describe a bioinformatic workflow necessary to identify highly probable interaction partners in the large-scale dataset.
View Article and Find Full Text PDFQueuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits.
View Article and Find Full Text PDFProtein-protein interactions (PPI) are essential to understanding the cellular function and key mechanisms necessary for life. Although understanding of the interactome and proteome has exploded due to high-throughput methods in the past decade, often limitations in technical methods result in a partial understanding of all PPI. Here we present a protocol dedicated to the Protein Interaction Screen on a peptide Matrix (PrISMa).
View Article and Find Full Text PDFDefects in mitochondrial fusion are at the base of many diseases. Mitofusins power membrane-remodeling events via self-interaction and GTP hydrolysis. However, how exactly mitofusins mediate fusion of the outer membrane is still unclear.
View Article and Find Full Text PDFDysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism.
View Article and Find Full Text PDFHere, we present a protocol to identify and quantify phosphopeptides during the dynamic formation of an immunological synapse. We describe steps for mixing isotope-labeled immune and target cells, the stabilization of cell-to-cell conjugates by cross-linking, and their isolation by fluorescence-activated cell sorting. We detail the isolation of phosphopeptides by phosphopeptide enrichment and their subsequent measurement by mass spectrometry.
View Article and Find Full Text PDFBackground: Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression.
View Article and Find Full Text PDFClaudins are a family of transmembrane proteins expressed in epithelial tissues and are the major components of tight junctions (TJs), which define barrier properties in epithelia and maintain cell polarity. How claudins regulate the formation of TJs and which functions they exert outside of them is not entirely understood. Although the long and unstructured C-terminal tail is essential for regulation, it is unclear how it is involved in these functions beyond interacting with TJ-associated proteins such as TJ protein ZO-1 (TJP1).
View Article and Find Full Text PDFProtein-protein interactions mediated by intrinsically disordered regions are often based on short linear motifs (SLiMs). SLiMs are implicated in signal transduction and gene regulation yet remain technically laborious and notoriously challenging to study. Here, we present an optimized method for a protein interaction screen on a peptide matrix (PRISMA) in combination with quantitative MS.
View Article and Find Full Text PDFCancer metastasis causes >90% of cancer deaths and remains a major treatment challenge. Here we deciphered the impact of tyrosine phosphorylation of MACC1, a causative driver for cancer metastasis, for cancer cell signaling and novel interventions to restrict cancer metastasis. We identified MACC1 as new MEK1 substrate.
View Article and Find Full Text PDFC/EBPα represents a paradigm intrinsically disordered transcription factor containing short linear motifs and post-translational modifications (PTM). Unraveling C/EBPα protein interaction networks is a prerequisite for understanding the multi-modal functions of C/EBPα in hematopoiesis and leukemia. Here, we combined arrayed peptide matrix screening (PRISMA) with BioID to generate an validated and isoform specific interaction map of C/EBPα.
View Article and Find Full Text PDFThe analysis of protein-protein interactions (PPIs) is essential for the understanding of cellular signaling. Besides probing PPIs with immunoprecipitation-based techniques, peptide pull-downs are an alternative tool specifically useful to study interactome changes induced by post-translational modifications. Peptides for pull-downs can be chemically synthesized and thus offer the possibility to include amino acid exchanges and post-translational modifications (PTMs) in the pull-down reaction.
View Article and Find Full Text PDFThe infiltrative nature of Glioblastoma (GBM), the most aggressive primary brain tumor, critically prevents complete surgical resection and masks tumor cells behind the blood brain barrier reducing the efficacy of systemic treatment. Here, we use a genome-wide interference screen to determine invasion-essential genes and identify the AN1/A20 zinc finger domain containing protein 3 (ZFAND3) as a crucial driver of GBM invasion. Using patient-derived cellular models, we show that loss of ZFAND3 hampers the invasive capacity of GBM, whereas ZFAND3 overexpression increases motility in cells that were initially not invasive.
View Article and Find Full Text PDFMicroglial cells are considered as sensors of brain pathology by detecting any sign of brain lesions, infections, or dysfunction and can influence the onset and progression of neurological diseases. They are capable of sensing their neuronal environment via many different signaling molecules, such as neurotransmitters, neurohormones and neuropeptides. The neuropeptide VGF has been associated with many metabolic and neurological disorders.
View Article and Find Full Text PDFThe original publication of this article [1] contained 3 minor errors in Figs. 1, 3 and 5. In this correction article the updated figures are published.
View Article and Find Full Text PDFProteomics data encode molecular features of diagnostic value and accurately reflect key underlying biological mechanisms in cancers. Histopathology imaging is a well-established clinical approach to cancer diagnosis. The predictive relationship between large-scale proteomics and H&E-stained histopathology images remains largely uncharacterized.
View Article and Find Full Text PDFCCAAT enhancer-binding protein beta (C/EBPβ) is a pioneer transcription factor that specifies cell differentiation. C/EBPβ is intrinsically unstructured, a molecular feature common to many proteins involved in signal processing and epigenetics. The structure of C/EBPβ differs depending on alternative translation initiation and multiple post-translational modifications (PTM).
View Article and Find Full Text PDFMonocytes/macrophages have begun to emerge as key cellular modulators of brain homeostasis and central nervous system (CNS) disease. In the healthy brain, resident microglia are the predominant macrophage cell population; however, under conditions of blood-brain barrier leakage, peripheral monocytes/macrophages can infiltrate the brain and participate in CNS disease pathogenesis. Distinguishing these two populations is often challenging, owing to a paucity of universally accepted and reliable markers.
View Article and Find Full Text PDFSex differences in brain structure and function are of substantial scientific interest because of sex-related susceptibility to psychiatric and neurological disorders. Neuroinflammation is a common denominator of many of these diseases, and thus microglia, as the brain's immunocompetent cells, have come into focus in sex-specific studies. Here, we show differences in the structure, function, and transcriptomic and proteomic profiles in microglia freshly isolated from male and female mouse brains.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes.
View Article and Find Full Text PDFThe inhibition of inflammation-associated angiogenesis ameliorates inflammatory diseases by reducing the recruitment of tissue-infiltrating leukocytes. However, it is not known if angiogenesis has an active role during the initiation of inflammation or if it is merely a secondary effect occurring in response to stimuli by tissue-infiltrating leukocytes. Here, we show that angiogenesis precedes leukocyte infiltration in experimental models of inflammatory bowel disease and acute graft-versus-host disease (GVHD).
View Article and Find Full Text PDFNeutrophil serine proteases (NSPs) are released from activated neutrophils during inflammation. Here we studied the transfer of the three major NSPs, namely proteinase 3, human neutrophil elastase, and cathepsin G, from neutrophils to endothelial cells and used an unbiased approach to identify novel endothelial NSP substrates. Enzymatically active NSPs were released from stimulated neutrophils and internalized by endothelial cells in a dose- and time-dependent manner as shown by immunoblotting, flow cytometry, and the Boc-Ala substrate assay.
View Article and Find Full Text PDFCD69 is involved in immune cell homeostasis, regulating the T cell-mediated immune response through the control of Th17 cell differentiation. However, natural ligands for CD69 have not yet been described. Using recombinant fusion proteins containing the extracellular domain of CD69, we have detected the presence of a ligand(s) for CD69 on human dendritic cells (DCs).
View Article and Find Full Text PDFThe combination of stable isotope labeling (SIL) with mass spectrometry (MS) allows comparison of the abundance of thousands of proteins in complex mixtures. However, interpretation of the large data sets generated by these techniques remains a challenge because appropriate statistical standards are lacking. Here, we present a generally applicable model that accurately explains the behavior of data obtained using current SIL approaches, including (18)O, iTRAQ, and SILAC labeling, and different MS instruments.
View Article and Find Full Text PDF