Publications by authors named "Daniel Pedziwiatr"

Mobilization of stem cells from bone marrow (BM) into peripheral blood (PB) in response to tissue or organ injury, infections, strenuous exercise, or mobilization-inducing drugs is as we postulated result of a "sterile inflammation" in the BM microenvironment that triggers activation of the Complement Cascade (ComC). Therefore, we became interested in the role of the Nlrp3 inflammasome in this process and show for the first time that its activation in ATP-dependent manner orchestrates BM egress of hematopoietic stem/progenitor cells (HSPCs) as well as other stem cells, including mesenchymal stroma cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs). To explain this extracellular ATP is a potent activator of the Nrlp3 inflammasome, which leads to the release of interleukin 1β and interleukin 18, as well as several danger-associated molecular pattern molecules (DAMPs) that activate the mannan-binding lectin (MBL) pathway of the ComC, from cells of the innate immunity network.

View Article and Find Full Text PDF

Recent evidence indicates that the occurrence of psychiatric disorders in patients is linked to a local "sterile" inflammation of brain or due to a systemic inflammation process that affects the central nervous system. This is supported by the observation that in peripheral blood of psychotic patients are detectable several mediators and markers of inflammation as well as clinical data on correlations between systemic chronic inflammatory processes and psychiatric disorders. This may explain why some reported anti-inflammatory treatment strategies have beneficial effects on ameliorating psychotic events.

View Article and Find Full Text PDF

After the publication of the article, the authors realize that they overlooked stating that the author Magda Kucia was the recipient of an OPUS grant (grant no. UMO‑2016/21/B/NZ4/00201). Therefore, the Acknowledgements section of the paper should have read as follows (the added text is highlighted in bold): "This study was supported by NIH grants 2R01 DK074720 and R01HL112788, the Stella and Henry Endowment, and NCN Harmonia grant UMO‑2014/14/M/NZ3/00475 to M.

View Article and Find Full Text PDF

Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses.

View Article and Find Full Text PDF

One of the important questions when studying established cancer cell lines is whether such cells contain a subpopulation of primitive cancer stem cells that maintains the expansion of the cell line. To address this issue, we performed studies on the established human embryonal carcinoma cell line NTera2 by evaluating the potential stemness of cells sorted according to their expression of the cell surface stem cell markers CD133 and SSEA4. By performing in vitro and in vivo assays, we observed different properties of cells expressing both, one, or neither of these antigens.

View Article and Find Full Text PDF

We report that human lung cancer cell lines express functional receptors for pituitary sex hormones (SexHs) and respond to stimulation by follicle‑stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL). Expression of these receptors has also been confirmed in patient lung cancer samples at the mRNA level. Stimulation of human lung cancer cell lines with FSH, LH, or PRL stimulated migration and chemotaxis, and some cell lines responded by enhanced proliferation.

View Article and Find Full Text PDF

In this paper we examined whether stem cells and factors responsible for their movement may serve as new biological markers of anxiety disorders. The study was carried out on a group of 30 patients diagnosed with panic disorder (examined before and after treatment), compared to 30 healthy individuals forming the control group. We examined the number of circulating HSCs (hematopoetic stem cells) (Lin-/CD45 +/CD34 +) and HSCs (Lin-/CD45 +/AC133 +), the number of circulating VSELs (very small embryonic-like stem cells) (Lin-/CD45-/CD34 +) and VSELs (Lin-/CD45-/AC133 +), as well as the concentration of complement components: C3a, C5a and C5b-9, SDF-1 (stromal derived factor) and S1P (sphingosine-1-phosphate).

View Article and Find Full Text PDF

There are several mechanisms by which cells communicate with each other. Evidence accumulates that the evolutionary oldest mechanisms of cell-cell communication involves extracellular microvesicles (ExMVs). Generally, these circular membrane fragments enriched for mRNA, miRNA, proteins, and bioactive lipids are released by exocytosis from endosomal compartment or are directly formed by budding from cell surface membranes.

View Article and Find Full Text PDF

Background: Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines.

Methods: In our studies we employed murine embrynic stem cells (ESD3), murine (P19) and human (NTERA-2) teratocarcimona cells lines, human ovarian cancer cells (A2780) as well as purified murine and human purified very small embryonic like stem cells (VSELs).

View Article and Find Full Text PDF

It has been proposed that established cell lines contain populations of cancer stem cells (CSCs), which are responsible for expansion of these cell lines and their metastatic potential. To address this issue better, we employed a human ovarian cancer cell line, A2780, and sorted cells according to the postulated highly mestatatic cancer stem cell phenotype, CD24CD44, and the less-metastatic CD24CD44 and CD24CD44 phenotypes. These cells were employed in chemotaxis assays to migrate in response to conditioned media harvested from bone marrow or liver cells damaged by irradiation and in assays to grow tumors after injection into immunodeficient mice.

View Article and Find Full Text PDF

Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals.

View Article and Find Full Text PDF

Activation of complement cascade (ComC) play and important role in mobilization of hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood (PB). While there are vast experimental data on the mechanisms and factors that induce or promote mobilization of HSPCs, there is relatively less data on negative regulators of this process. We demonstrate for the first time that heme oxygenase-1 (HO-1) that has a well-documented anti-inflammatory potential plays an important and heretofore unrecognized role in retention of HSPCs in BM niches by i) modulating negatively activation of mobilization promoting ComC, ii) maintaining stromal derived factor-1 (SDF-1) level in the BM microenvironment and iii) attenuating chemotactic responsiveness of HSPCs to SDF-1 and sphingosine-1 phosphate (S1P) gradients in PB.

View Article and Find Full Text PDF

Background: Low calorie intake, or calorie restriction (CR) without malnutrition, has been demonstrated in several animal species, including mice, to increase both median and maximum lifespan as well as delay reproductive senescence. Our previous work demonstrated a positive correlation between life span and the number of very small embryonic-like stem cells (VSELs) in long living Laron dwarf mice. These animals have very low levels of circulating insulin-like growth factor 1 (IGF-1) in peripheral blood (PB), maintain higher numbers of hematopoietic stem cells (HSPCs) in bone marrow (BM), and display prolonged fecundity compared with wild type littermates.

View Article and Find Full Text PDF

Regenerative medicine is searching for stem cells that can be safely and efficiently employed for regeneration of damaged solid organs (e.g., the heart, brain, or liver).

View Article and Find Full Text PDF

In this study, we tested the novel hypothesis that stem cells and those factors that modulate their trafficking may be biological markers for acute psychosis. Twenty-eight subjects during their first nonaffective psychotic episode were investigated before and after antipsychotic treatment and were compared with 35 healthy controls (CG); the psychotic group (PG) was divided into "schizophrenic" (SG) and "non-schizophrenic" (NG) subgroups. We examined the number of circulating Lin(-)/CD45(-)/CD34(+) and Lin(-)/CD45(-)/CD133(+) very small embryonic-like stem cells (VSELs), which express markers of the neural lineage, and also the plasma levels of factors that modulate their trafficking: the C3a, C5a, and C5b-9 activated complement cascade components, stromal-derived factor 1, and sphingosine-1-phosphate (S1P).

View Article and Find Full Text PDF

Umbilical cord blood-derived very small embryonic-like stem cells (UCB-VSELs) are the most primitive stem cells circulating in fetal peripheral blood. These very rare cells slightly smaller than red blood cells i) become mobilized during delivery, ii) are enriched in fraction of CD133+ Lin-CD45- cells iii) express markers of pluripotent stem cells (e.g.

View Article and Find Full Text PDF

Bi-directional selective genotyping (BSG) carried out on two opposite groups of F(9)(541 × Ot1-3) recombinant inbred lines (RILs) with extremely low and extremely high alpha-amylase activities in mature (dry) grain of rye, followed by molecular mapping, revealed a complex system of selection-responsive loci. Three classes of loci controlling alpha-amylase activity were discerned, including four major AAD loci on chromosomes 3R (three loci) and 6RL (one locus) responding to both directions of the disruptive selection, 20 AAR loci on chromosomes 2RL (three loci), 3R (three loci), 4RS (two loci), 5RL (three loci), 6R (two loci) and 7R (seven loci) responding to selection for low alpha-amylase activity and 17 AAE loci on chromosomes 1RL (seven loci), 2RS (two loci), 3R (two loci), 5R (two loci) and 6RL (four loci) affected by selection for high alpha-amylase activity. The majority of the discerned AA loci also showed responsiveness to selection for preharvest sprouting (PHS).

View Article and Find Full Text PDF