Spatially resolved polarization switching in ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model.
View Article and Find Full Text PDFSpontaneous polarization of ferroelectric materials has been for a long time proposed as binary information support, but it suffers so far from destructive readout. A nondestructive resistive readout of the ferroelectric polarization state in a metal-ferroelectric-metal capacitor would thus be advantageous for data storage applications. Combing conducting force microscopy and piezoelectric force microscopy, we unambiguously show that ferroelectric polarization direction and resistance state are correlated for epitaxial ferroelectric Pb(Zr(0.
View Article and Find Full Text PDFA nanofabrication technique combining pulsed laser deposition and a nanoporous anodic aluminum oxide membrane mask is being proposed to prepare various types of multiferroic nanocomposites, viz. periodically ordered CoFe(2)O(4) dots covered by a continuous Pb(Zr,Ti)O(3) layer, Pb(Zr,Ti)O(3) dots covered with CoFe(2)O(4), and Pb(Zr,Ti)O(3)/CoFe(2)O(4) bilayer heterostructure dots. By properly tuning the processing parameters, epitaxial nanodot-matrix composites can be obtained.
View Article and Find Full Text PDF