Unlabelled: Ergot alkaloid synthesis () gene clusters found in several fungi encode biosynthesis of agriculturally and pharmaceutically important ergot alkaloids. Although the biosynthetic genes of the ergot alkaloid pathway have been well characterized, regulation of those genes is unknown. We characterized a gene with sequence similarity to a putative transcription factor and that was found adjacent to the cluster of , a plant symbiont and insect pathogen.
View Article and Find Full Text PDFErgot alkaloids are fungal natural products with important roles in agriculture and medicine. We used heterologous expression and gene knockout approaches to investigate potential roles for the product of a major facilitator superfamily transporter gene () recently found in an ergot alkaloid biosynthetic gene cluster in . A strain of previously engineered to accumulate lysergic acid, but which did not convert the precursor agroclavine to lysergic acid efficiently or secrete lysergic acid well, was chosen as an expression host for .
View Article and Find Full Text PDFAppl Environ Microbiol
August 2023
Ergot alkaloids are fungal specialized metabolites that are important in agriculture and serve as sources of several pharmaceuticals. Aspergillus is a soil saprotroph that possesses two ergot alkaloid biosynthetic gene clusters encoding lysergic acid amide production. We identified two additional, partial biosynthetic gene clusters within the .
View Article and Find Full Text PDFAppl Environ Microbiol
June 2023
Opportunistically pathogenic fungi have varying potential to cause disease in animals. Factors contributing to their virulence include specialized metabolites, which in some cases evolved in contexts unrelated to pathogenesis. Specialized metabolites that increase fungal virulence in the model insect Galleria mellonella include the ergot alkaloids fumigaclavine C in Aspergillus fumigatus (syn.
View Article and Find Full Text PDFErgot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein.
View Article and Find Full Text PDFObjective: The fungus Metarhizium brunneum produces ergot alkaloids of the lysergic acid amide class, most abundantly lysergic acid α-hydroxyethylamide (LAH). Genes for making ergot alkaloids are clustered in the genomes of producers. Gene clusters of LAH-producing fungi contain an α/β hydrolase fold protein-encoding gene named easP whose presence correlates with LAH production but whose contribution to LAH synthesis in unknown.
View Article and Find Full Text PDFHeritable microorganisms play critical roles in life cycles of many macro-organisms but their prevalence and functional roles are unknown for most plants. Bioactive ergot alkaloids produced by heritable Periglandula fungi occur in some morning glories (Convolvulaceae), similar to ergot alkaloids in grasses infected with related fungi. Ergot alkaloids have been of longstanding interest given their toxic effects, psychoactive properties, and medical applications.
View Article and Find Full Text PDFAppl Environ Microbiol
November 2021
Ergot alkaloids derived from lysergic acid have impacted humanity as contaminants of crops and as the bases of pharmaceuticals prescribed to treat dementia, migraines, and other disorders. Several plant-associated fungi in the Clavicipitaceae produce lysergic acid derivatives, but many of these fungi are difficult to culture and manipulate. Some Aspergillus species, which may be more ideal experimental and industrial organisms, contain an alternate branch of the ergot alkaloid pathway, but none were known to produce lysergic acid derivatives.
View Article and Find Full Text PDFSeveral fungi, including the plant root symbiont and insect pathogen Metarhizium brunneum, produce lysergic acid amides via a branch of the ergot alkaloid pathway. Lysergic acid amides include important pharmaceuticals and pharmaceutical lead compounds and have potential ecological significance, making knowledge of their biosynthesis relevant. Many steps in the biosynthesis of lysergic acid amides have been determined, but terminal steps in the synthesis of lysergic acid α-hydroxyethylamide (LAH)-by far the most abundant lysergic acid amide in -are unknown.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2020
Ergot alkaloids are important specialized fungal metabolites that are used to make potent pharmaceuticals for neurological diseases and disorders. Lysergic acid (LA) and dihydrolysergic acid (DHLA) are desirable lead compounds for pharmaceutical semisynthesis but are typically transient intermediates in the ergot alkaloid and dihydroergot alkaloid pathways. Previous work with demonstrated strategies to produce these compounds as pathway end products, but their percent yield (percentage of molecules in product state as opposed to precursor state) was low.
View Article and Find Full Text PDFGenomic sequence data indicate that certain fungi in the genus have the capacity to produce lysergic acid-derived ergot alkaloids, but accumulation of ergot alkaloids in these fungi has not been demonstrated previously. We assayed several species grown under different conditions for accumulation of ergot alkaloids. Isolates of and accumulated the lysergic acid amides lysergic acid α-hydroxyethyl amide, ergine, and ergonovine on sucrose-yeast extract agar but not on two other tested media.
View Article and Find Full Text PDFFungivorous millipedes (subterclass Colobognatha) likely represent some of the earliest known mycophagous terrestrial arthropods, yet their fungal partners remain elusive. Here we describe relationships between fungi and the fungivorous millipede, . Their fungal community is surprisingly diverse, including 176 genera, 39 orders, four phyla, and several undescribed species.
View Article and Find Full Text PDFEntomopathogenic fungi routinely kill their hosts before releasing infectious spores, but a few species keep insects alive while sporulating, which enhances dispersal. Transcriptomics- and metabolomics-based studies of entomopathogens with post-mortem dissemination from their parasitized hosts have unraveled infection processes and host responses. However, the mechanisms underlying active spore transmission by Entomophthoralean fungi in living insects remain elusive.
View Article and Find Full Text PDFMany species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor.
View Article and Find Full Text PDFConvolvulaceous species have been reported to contain several bioactive principles thought to be toxic to livestock including the calystegines, swainsonine, ergot alkaloids, and indole diterpene alkaloids. Swainsonine, ergot alkaloids, and indole diterpene alkaloids are produced by seed transmitted fungal symbionts associated with their respective plant host, while the calystegines are produced by the plant. To date, and represent the only species and members of the Convolvulaceae known to contain indole diterpene alkaloids, however several other Convolvulaceous species are reported to contain ergot alkaloids.
View Article and Find Full Text PDFThe Ascomycete fungus Claviceps gigantea infects maize kernels and synthetizes several alkaloids, mostly dihydrolysergamides. There is limited information on the damage these toxins cause in mammals, despite reports from infested areas with 90% presence of the fungus sclerotia. With this background, it was decided to determine the biological activity of chemical compounds present in sclerotia of C.
View Article and Find Full Text PDFErgot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. plays a major role in the ripening of Brie and Camembert cheeses.
View Article and Find Full Text PDFEpichloë species (Clavicipitaceae, Ascomycota) are endophytic symbionts of many cool-season grasses. Many interactions between Epichloë and their host grasses contribute to plant growth promotion, protection from many pathogens and insect pests, and tolerance to drought stress. Resistance to insect herbivores by endophytes associated with Hordeum species has been previously shown to vary depending on the endophyte-grass-insect combination.
View Article and Find Full Text PDFCool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China.
View Article and Find Full Text PDFJ Agric Food Chem
December 2017
Biosynthesis of the dihydrogenated forms of ergot alkaloids is of interest because many of the ergot alkaloids used as pharmaceuticals may be derived from dihydrolysergic acid (DHLA) or its precursor dihydrolysergol. The maize (Zea mays) ergot pathogen Claviceps gigantea has been reported to produce dihydrolysergol, a hydroxylated derivative of the common ergot alkaloid festuclavine. We hypothesized expression of C.
View Article and Find Full Text PDFNeosartorya fumigata (Aspergillus fumigatus) is the most common cause of invasive aspergillosis, a frequently fatal lung disease primarily affecting immunocompromised individuals. This opportunistic fungal pathogen produces several classes of specialised metabolites including products of a branch of the ergot alkaloid pathway called fumigaclavines. The biosynthesis of the N.
View Article and Find Full Text PDFErgot alkaloids are specialized fungal metabolites that are important as the bases of several pharmaceuticals. Many ergot alkaloids are derivatives of lysergic acid (LA) and have vasoconstrictive activity, whereas several dihydrolysergic acid (DHLA) derivatives are vasorelaxant. The pathway to LA is established, with the P450 monooxygenase CloA playing a key role in oxidizing its substrate agroclavine to LA.
View Article and Find Full Text PDFErgot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes.
View Article and Find Full Text PDFMolecular genetic techniques to precisely eliminate genes in asexual filamentous fungi require the introduction of a marker gene into the target genome. We developed a novel strategy to eliminate genes or gene clusters located in subterminal regions of chromosomes, and then eliminate the marker gene and vector backbone used in the transformation procedure. Because many toxin gene clusters are subterminal, this method is particularly suited to generating nontoxic fungal strains.
View Article and Find Full Text PDFThe profile of ergot alkaloids in perennial ryegrass (Lolium perenne) containing the endophytic fungus Epichloë typhina × festucae includes high concentrations of the early pathway metabolites ergotryptamine and chanoclavine-I in addition to the pathway end-product ergovaline. Because these alkaloids differ in activity, we investigated strategies to alter their relative concentrations. An RNAi-based approach reduced the concentration of mRNA from the gene easA, which encodes an enzyme required for a ring closure that separates ergotryptamine and chanoclavine-I from ergovaline.
View Article and Find Full Text PDF