While a lot is known about cytokinins (CKs) and their actions at the molecular and cellular levels in plants, much less is known about the function of CKs in other kingdoms such as fungi. CKs have been detected in a wide range of fungal species where they play roles ranging from enhancing the virulence of phytopathogens to fortifying plant growth when secreted from fungal symbionts. However, the role of CKs where they concern fungal physiology, apart from plant associations, remains largely uncharacterized.
View Article and Find Full Text PDFSymbiotic Methylobacterium comprise a significant portion of the phyllospheric microbiome, and are known to benefit host plant growth, development, and confer tolerance to stress factors. The near ubiquitous use of the broad-spectrum herbicide, glyphosate, in farming operations globally has necessitated a more expansive evaluation of the impacts of the agent itself and formulations containing glyphosate on important components of the plant phyllosphere, including Methylobacterium.This study provides an investigation of the sensitivity of 18 strains of Methylobacterium to glyphosate and two commercially available glyphosate-based herbicides (GBH).
View Article and Find Full Text PDFBackground: Synthetic algal-fungal and algal-bacterial cultures have been investigated as a means to enhance the technological applications of the algae. This inclusion of other microbes has enhanced growth and improved stress tolerance of the algal culture. The goal of the current study was to investigate natural microbial consortia to gain an understanding of the occurrence and benefits of these associations in nature.
View Article and Find Full Text PDFBackground: Symbiotic Methylobacterium strains comprise a significant part of plant microbiomes. Their presence enhances plant productivity and stress resistance, prompting classification of these strains as plant growth-promoting bacteria (PGPB). Methylobacteria can synthesize unusually high levels of plant hormones, called cytokinins (CKs), including the most active form, trans-Zeatin (tZ).
View Article and Find Full Text PDF