Infectious diseases remain a significant health concern around the world. Mathematical modeling of these diseases can help us understand their dynamics and develop more effective control strategies. In this work, we show the capabilities of interior-point methods and nonlinear programming (NLP) formulations to efficiently estimate parameters in multiple discrete-time disease models using measles case count data from three cities.
View Article and Find Full Text PDFMathematical models can enhance our understanding of childhood infectious disease dynamics, but these models depend on appropriate parameter values that are often unknown and must be estimated from disease case data. In this paper, we develop a framework for efficient estimation of childhood infectious disease models with seasonal transmission parameters using continuous differential equations containing model and measurement noise. The problem is formulated using the simultaneous approach where all state variables are discretized, and the discretized differential equations are included as constraints, giving a large-scale algebraic nonlinear programming problem that is solved using a nonlinear primal-dual interior-point solver.
View Article and Find Full Text PDF