Background: The randomized, phase 2 RENEW trial (NCT01721161) evaluated efficacy/safety of opicinumab (anti-LINGO-1) versus placebo in patients with first-episode unilateral acute optic neuritis (AON). Although no significant differences in the latency recovery of visual evoked potential (VEP) were observed between opicinumab and placebo groups in the intention to treat (ITT) population, the prespecified per-protocol (PP) population showed better recovery with opicinumab than with placebo. RENEWED (NCT02657915) was a one-visit, follow-up study 2 years after the last RENEW study visit (Week 32) designed to assess the long-term electrophysiological and clinical outcomes for participants previously enrolled and having received study treatment in RENEW.
View Article and Find Full Text PDFHepatitis B virus (HBV) is a hepatotropic DNA virus that replicates by reverse transcription. It chronically infects >296 million people worldwide, including ∼850,000 in the USA, and kills 820,000 annually worldwide. Current nucleos(t)ide analogue (NA) or pegylated interferon α therapies do not eradicate the virus and would benefit from a complementary antiviral drug.
View Article and Find Full Text PDFBackground: Paramagnetic rim lesions (PRLs) and slowly expanding lesions (SELs) have been posited as markers of chronic active lesions (CALs).
Objective: To assess the lesion-level concordance of PRLs and SELs in MS and to characterize changes in brain tissue integrity in CALs over time.
Methods: MRIs were analyzed from a substudy of AFFINITY [NCT03222973], a phase 2 trial of opicinumab in relapsing MS.
Capsid assembly modulators (CAMs) represent a novel class of antiviral agents targeting hepatitis B virus (HBV) capsid to disrupt the assembly process. NVR 3-778 is the first CAM to demonstrate antiviral activity in patients infected with HBV. However, the relatively low aqueous solubility and moderate activity in the human body halted further development of NVR 3-778.
View Article and Find Full Text PDFHepatitis B virus (HBV) chronically infects >250 million people. It replicates by a unique protein-primed reverse transcription mechanism, and the primary anti-HBV drugs are nucleos(t)ide analogs targeting the viral polymerase (P). P has four domains compared to only two in most reverse transcriptases: the terminal protein (TP) that primes DNA synthesis, a spacer, the reverse transcriptase (RT), and the ribonuclease H (RNase H).
View Article and Find Full Text PDFObjective: Slowly expanding lesions (SELs), a subgroup of chronic white matter lesions that gradually expand over time, have been shown to predict disability accumulation in primary progressive multiple sclerosis (MS) disease. However, the relationships between SELs, acute lesion activity (ALA), overall chronic lesion activity (CLA) and disability progression are not well understood. In this study, we examined the ASCEND phase III clinical trial, which compared natalizumab with placebo in secondary progressive MS (SPMS).
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2022
The α-hydroxytropolones (αHTs) are troponoid inhibitors of hepatitis B virus (HBV) replication that can target HBV RNase H with submicromolar efficacies. αHTs and related troponoids (tropones and tropolones) can be cytotoxic in cell lines as measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2-tetrazolium (MTS) assays that assess mitochondrial function. Previous studies suggest that tropolones induce cytotoxicity through inhibition of mitochondrial respiration.
View Article and Find Full Text PDFNormal-appearing white matter is far from normal in multiple sclerosis; little is known about the precise pathology or spatial pattern of this alteration and its relation to subsequent lesion formation. This study was undertaken to evaluate normal-appearing white matter abnormalities in brain areas where multiple sclerosis lesions subsequently form, and to investigate the spatial distribution of normal-appearing white matter abnormalities in persons with multiple sclerosis. Brain MRIs of pre-lesion normal-appearing white matter were analysed in participants with new T2 lesions, pooled from three clinical trials: SYNERGY (NCT01864148; = 85 with relapsing multiple sclerosis) was the test data set; ASCEND (NCT01416181; = 154 with secondary progressive multiple sclerosis) and ADVANCE (NCT00906399; = 261 with relapsing-remitting multiple sclerosis) were used as validation data sets.
View Article and Find Full Text PDFGLS4, a potent antiviral drug candidate, has been widely studied and entered into phase II clinical trials. Nevertheless, the therapeutic application of GLS4 is limited due to poor water solubility, short half-life, and low bioavailability. In order to improve the hydrophilicity and pharmacokinetic (PK) properties of GLS4, herein, we retained the dominant fragments, and used a scaffold hopping strategy to replace the easily metabolized morpholine ring of GLS4 with diverse sizes of spiro rings consisting of hydrogen bond donor and acceptor substituents.
View Article and Find Full Text PDFIn vitro properties of antibody-drug conjugates (ADCs) such as binding, internalization, and cytotoxicity are often well characterized before in vivo studies. Interpretation of in vivo studies might be significantly enhanced by molecular imaging tools. We present here a dual-isotope cryoimaging quantitative autoradiography (CIQA) methodology combined with advanced 3-dimensional imaging and analysis allowing for the simultaneous study of both antibody and payload distribution in tissues of interest in a preclinical setting.
View Article and Find Full Text PDFGuanylyl cyclase C (GCC) is a cell-surface protein that is expressed by normal intestinal epithelial cells, more than 95% of metastatic colorectal cancers (mCRC), and the majority of gastric and pancreatic cancers. Due to strict apical localization, systemically delivered GCC-targeting agents should not reach GCC in normal intestinal tissue, while accessing antigen in tumor. We generated an investigational antibody-drug conjugate (TAK-264, formerly MLN0264) comprising a fully human anti-GCC monoclonal antibody conjugated to monomethyl auristatin E via a protease-cleavable peptide linker.
View Article and Find Full Text PDFIntroduction: Survival of patients after resection of colorectal cancer liver metastasis (CRCLM) is 36%-58%. Positron emission tomography (PET) tracers, imaging the expression of prognostic biomarkers, may contribute to assign appropriate management to individual patients. Aurora kinase A (AURKA) expression is associated with survival of patients after CRCLM resection.
View Article and Find Full Text PDFIntroduction: The Aurora kinases play a key role in mitosis and have recently been identified as attractive targets for therapeutic intervention in cancer. The aim of this study was therefore to investigate the utility of 3'-[(18)F]fluoro-3'-deoxythymidine (FLT) and 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) for assessment of tumor response to the multi-targeted Aurora B kinase inhibitor, TAK-901.
Methods: Balb/c nude mice bearing HCT116 colorectal xenografts were treated with up to 30mg/kg TAK 901 or vehicle intravenously twice daily for two days on a weekly cycle.
Angiogenesis, the development of new blood vessels, is essential for tumour growth; this process is stimulated by the secretion of numerous growth factors including platelet derived growth factor (PDGF). PDGF signalling, through its receptor platelet derived growth factor receptor (PDGFR), is involved in vessel maturation, stimulation of angiogenesis and upregulation of other angiogenic factors, including vascular endothelial growth factor (VEGF). PDGFR is a promising target for anti-cancer therapy because it is expressed on both tumour cells and stromal cells associated with the vasculature.
View Article and Find Full Text PDFPurpose: The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM).
View Article and Find Full Text PDFWhen using tracer kinetic modeling to analyze dynamic contrast-enhanced MRI (DCE-MRI) it is necessary to identify an appropriate arterial input function (AIF). The measured AIF is often poorly sampled in both clinical and preclinical MR systems due to the initial rapid increase in contrast agent concentration and the subsequent large-scale signal change that occurs in the arteries. However, little work has been carried out to quantify the sensitivity of tracer kinetic modeling parameters to the form of AIF.
View Article and Find Full Text PDFCediranib (RECENTIN, AZD2171) is a highly potent inhibitor of the tyrosine kinase activity associated with all three vascular endothelial growth factor (VEGF) receptors and is currently in Phase II/III clinical trials. Preclinically, cediranib inhibits VEGF signaling and angiogenesis in vivo and impedes solid tumor growth significantly. Clinically, changes observed using dynamic contrast-enhanced MRI (DCE-MRI) with gadopentate suggest that acute cediranib treatment compromises tumor hemodynamics.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) can measure the effects of therapies targeting the tumor vasculature and has demonstrated that vascular-damaging agents (VDA) induce acute vascular shutdown in tumors in human and animal models. However, at subtherapeutic doses, blood flow may recover before the induction of significant levels of necrosis. We present the relationship between changes in MRI biomarkers and tumor necrosis.
View Article and Find Full Text PDFPurpose: To characterize misregistration artifact in arterial input function (AIF) pixels in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a two-dimensional non-echo-planar imaging (EPI)-based gradient-recalled echo (GRE) sequence.
Materials And Methods: Dynamic gadopentetate-enhanced MRI was acquired in the rat using a semikeyhole acquisition scheme. The AIF was obtained from abdominal aorta pixels.
Cortical spreading depression (CSD) produces propagating waves of transient neuronal hyperexcitability followed by depression. CSD is initiated by K+ release following neuronal firing or electrical, mechanical or chemical stimuli. A triphasic (30-50 s) cortical potential transient accompanies localized transmembrane redistributions of K+, glutamate, Ca2+, Na+, Cl- and H+.
View Article and Find Full Text PDFThe purpose of this study was to design a keyhole pulse sequence for quantitative 2D dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on a spoiled gradient echo T1-weighted acquisition. Saturation recovery was applied to achieve a linear correlation between signal intensity and contrast agent concentration in an arterial input function (AIF) while simultaneously removing time-of-flight effect. To remove ghosting artifacts arising from incomplete presaturation, EXORCYCLE phase cycling with averaging was applied to the pulse sequence.
View Article and Find Full Text PDFAn application of independent component analysis to blood oxygenation level- dependent MRI (BOLD-MRI) results was used to detect cerebrovascular changes that followed the initiation of cortical spreading depression (CSD) in feline brain. The cortical images were obtained from a horizontal plane at 28 s intervals before, and for 1.4-1.
View Article and Find Full Text PDFCortical spreading depression (CSD) was induced by transient (10 min) applications of KCl in agar upon the cortical surface of alpha-chloralose anaesthetised cats. Its features were compared with CSD resulting from sustained applications of crystalline KCl through a mapping of the apparent diffusion coefficient (ADC) using diffusion-weighted echo planar imaging (DWI) over a poststimulus period of 60-100 min. Individual CSD events were computationally detected with the aid of Savitzky-Golay smoothing applied to critically sampled data derived from regions of interest (ROIs) made up of 2 x 2 pixel matrices.
View Article and Find Full Text PDF