Publications by authors named "Daniel Osei-Kuffuor"

To address the challenge of performance portability and facilitate the implementation of electronic structure solvers, we developed the basic matrix library (BML) and Parallel, Rapid O(N), and Graph-based Recursive Electronic Structure Solver (PROGRESS) library. The BML implements linear algebra operations necessary for electronic structure kernels using a unified user interface for various matrix formats (dense and sparse) and architectures (CPUs and GPUs). Focusing on density functional theory and tight-binding models, PROGRESS implements several solvers for computing the single-particle density matrix and relies on BML.

View Article and Find Full Text PDF

We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse.

View Article and Find Full Text PDF