Publications by authors named "Daniel Olmedo"

The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO NPs (5 nm; TiO-NP5 group) or MPs (45 μm; TiO-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS).

View Article and Find Full Text PDF

Background: Humans are exposed to exogenous sources of titanium-containing particles that can enter the body mainly by inhalation, ingestion, or dermal absorption. Given the widespread use of biomaterials in medicine, the surface of a titanium (Ti) biomedical device is a potential endogenous source of Ti ions and/or Ti-containing particles, such as TiO micro-(MPs) and nano-particles (NPs), resulting from biotribocorrosion processes. Ti ions or Ti-containing particles may deposit in epithelial cells of the oral mucosa, and the latter may therefore serve as bioindicators of short and long-term systemic Ti contamination.

View Article and Find Full Text PDF

Bone defects have prompted the development of biomaterial-based bone substitutes for restoring the affected tissue completely. Although many biomaterials have been designed and evaluated, the combination of properties required in a biomaterial for bone tissue engineering still poses a challenge. In this study, a chitosan-silica-based biocomposite was synthetized, and its physicochemical characteristics and biocompatibility were characterized, with the aim of exploring the advantages and drawbacks of its use in bone tissue engineering.

View Article and Find Full Text PDF

Objective: Bronchiectasis is a chronic respiratory disease characterized by inflammation, irreversible dilation of the bronchi, and recurrent pulmonary infections, with a high morbidity and mortality rate, but is less studied from the point of view of its prevalence and associated factors not directly related to respiratory prognosis. As it is a disease related to the exacerbation of the inflammatory process and oxidative stress, this study searched to investigate the micronucleus frequency in patients with and without bronchiectasis treated at a specialized pulmonology service in a hospital in the extreme south of Brazil.

Methods: Patients with a confirmed tomographic diagnosis of bronchiectasis were defined as cases.

View Article and Find Full Text PDF

Implant therapy using osseointegratable titanium (Ti) dental implants has revolutionized clinical dental practice and has shown a high rate of success. However, because a metallic implant is in contact with body tissues and fluids in vivo, ions/particles can be released into the biological milieu as a result of corrosion or biotribocorrosion. Ultrananocrystalline diamond (UNCD) coatings possess a synergistic combination of mechanical, tribological, and chemical properties, which makes UNCD highly biocompatible.

View Article and Find Full Text PDF

The surface of a biomedical implant can be a potential endogenous source of release of microparticles (MPs) and nanoparticles (NPs) into the biological environment. In addition, titanium particles from exogenous sources can enter the body through inhalation, ingestion, or dermal contact. The aim of this work was to evaluate the biological response of the lung, liver, and kidneys to acute exposure to titanium dioxide (TiO ).

View Article and Find Full Text PDF

Synthetic and natural biomaterials are a promising alternative for the treatment of critical-sized bone defects. Several parameters such as their porosity, surface, and mechanical properties are extensively pointed out as key points to recapitulate the bone microenvironment. Many biomaterials with this pursuit are employed to provide a matrix, which can supply the specific environment and architecture for an adequate bone growth.

View Article and Find Full Text PDF

Bone is a hierarchical material that has inspired the design of biopolymer-derived biocomposites for tissue engineering purposes. The present study sought to synthesize and perform the physicochemical characterization and biocompatibility of a collagen-silica-based biocomposite for potential application in bone tissue engineering. Ultrastructure, biodegradability, swelling behavior, and biocompatibility properties were analyzed to gain insight into the advantages and limitations to the use of this biomaterial as a bone substitute.

View Article and Find Full Text PDF

Peri-implantitis is an immune-mediated biological complication that is attributed to bacterial biofilms on the implant surface. As both periodontitis and peri-implantitis have similar inflammatory phenotypes when assessed cross-sectionally, treatment protocols for peri-implantitis were modeled according to those used for periodontitis. However, lack of efficacy of antimicrobial treatments targeting periodontal pathogens coupled with recent discoveries from open-ended microbial investigation studies create a heightened need to revisit the pathogenesis of peri-implantitis compared with that of periodontitis.

View Article and Find Full Text PDF

Objectives: To perform a retrospective, descriptive, histopathological study of peri-implant tissue pathologies associated with titanium dental implants (TDI), and to evaluate the presence of metallic particles in samples from a single diagnostic center.

Methods: Sixty-eight cases of TDI-associated lesions were retrieved from the Surgical Pathology Laboratory archives, School of Dentistry, University of Buenos Aires (UBA) (1990-2018). The study included re-examining the histopathological features of the biopsy samples, analyzing the inflammatory infiltrate, and examining the samples to detect metallic particles whose chemical composition was determined spectrophotometrically (EDS).

View Article and Find Full Text PDF

Bronchiectasis, which is an abnormal and irreversible dilation of one or several bronchial segments, causes significant morbidity and impaired quality of life to patients, mainly as the result of recurrent and chronic respiratory infections. is a microorganism known for its high infectious potential related to the production of molecules with great pathogenic power, such as enzymes, toxins, adhesins, and biofilm, which determine the degree of severity of systemic symptoms and can induce exacerbated immune response. This review highlighted the clinical significance of colonization/infection in bronchiectasis patients, since little is known about it, despite its increasing frequency of isolation and potential serious morbidity.

View Article and Find Full Text PDF

Background: Titanium is widely used in biomedicine. Due to biotribocorrosion, titanium dioxide (TiO) nanoparticles (NPs) can be released from the titanium implant surface, enter the systemic circulation, and migrate to various organs and tissues including the brain. A previous study showed that 5 nm TiO NPs reached the highest concentration in the brain.

View Article and Find Full Text PDF

Osseointegration was originally defined as a direct structural and functional connection between ordered living bone and the surface of a load-carrying implant. It is now said that an implant is regarded as osseointegrated when there is no progressive relative movement between the implant and the bone with which it is in direct contact. Although the term osseointegration was initially used with reference to titanium metallic implants, the concept is currently applied to all biomaterials that have the ability to osseointegrate.

View Article and Find Full Text PDF

High density polyethylene (HDPE) is a synthetic biomaterial used as a three-dimensional scaffold for bone defect reconstruction. Reports differ with regard to its biological response, particularly its osteoconductive capacity. The aim of the present work was to histologically and histomorphometrically evaluate tissue response to porous HDPE.

View Article and Find Full Text PDF

Objectives: A group of adolescents with oral piercings was studied to determine the presence of metallic particles in cells exfoliated from the mucosa surrounding their metal oral piercings and the association between such particles and the metal jewelry, and to evaluate subsequent tissue implications.

Materials And Methods: Sixteen teenage patients who had tongue and/or lip piercings were included. The clinical features of the oral mucosa and lip skin were evaluated.

View Article and Find Full Text PDF

The scope of this article is to assess low back pain prevalence and associated factors in the last 12 months among adolescents in a city in the south of the State of Piauí. It was a cross-sectional study which included 1,112 adolescents aged 13-19 in the city of Caracol, Piauí. Demographic, socio-economic, nutritional, behavioral and comorbidty characteristics were investigated.

View Article and Find Full Text PDF

As a result of biotribocorrosion, the surface of a titanium (Ti) biomedical device can be a potential source of systemic contamination with Ti nanoparticles (NPs). Although NPs can be chemically similar, differences in particle size may lead to different biological responses. The aim of this experimental study was to determine Ti trace levels in skin appendages and plasma and explore the influence of NP size on trace levels using a murine model.

View Article and Find Full Text PDF

A composite is a material made of more than one component, and the bond between the components is on a scale larger than the atomic scale. The objective of the present study was to synthesize and perform the structural characterization and biological evaluation of a new biocomposite (BCO) based on a novel combination of an organic and an inorganic phase, for bone tissue engineering applications. The organic phase consisted of Wharton's jelly (WJ), which was obtained from embryonic tissue following a protocol developed by our laboratory.

View Article and Find Full Text PDF

Although Ultrananocrystalline diamond (UNCD) has been proposed as a coating material for titanium biomedical implants, the biological effects and toxicity of UNCD particles that could eventually detach have not been studied to date. The biokinetics and biological effects of UNCD compared to titanium dioxide (TiO ) nanoparticles was evaluated in vivo using Wistar rats (n = 30) i.p.

View Article and Find Full Text PDF

The aim of this experimental work was to evaluate deposition of titanium dioxide (TiO2 ) microparticles and nanoparticles, which could originate from titanium bioimplants, in the gingiva. Wistar rats were injected intraperitoneally (i.p.

View Article and Find Full Text PDF

As a result of corrosion, microparticles (MP) and/or nanoparticles (NP) can be released from the metallic implants surface into the bioenvironment. The biological response to these particles depends not only on the physico-chemical properties of the particles but also on host factors, such as age. Macrophages have attracted wide concern in biomedicine.

View Article and Find Full Text PDF

Due to corrosion, a titanium implant surface can be a potential source for the release of micro (MPs) and nano-sized particles (NPs) into the biological environment. This work sought to evaluate the biokinetics of different sized titanium dioxide particles (TiO2 ) and their potential to cause cell damage. Wistar rats were intraperitoneally injected with 150 nm, 10 nm, or 5nm TiO2 particles.

View Article and Find Full Text PDF

Background: Oral exfoliative cytology is a diagnostic method that involves the study of cells exfoliated from the oral mucosa. Ions/particles released from metallic implants can remain in the peri-implant milieu. The aim of the present study is to assess the presence of metal particles in cells exfoliated from peri-implant oral mucosa around titanium dental implants.

View Article and Find Full Text PDF

Background: Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws.

View Article and Find Full Text PDF