MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.
View Article and Find Full Text PDFBehavioral variant frontotemporal dementia (bvFTD) is a clinical syndrome primarily caused by either tau (bvFTD-tau) or TDP-43 (bvFTD-TDP) proteinopathies. We previously found lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD is understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topologic order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation.
View Article and Find Full Text PDFObjective: Alzheimer's disease neuropathologic change and alpha-synucleinopathy commonly co-exist and contribute to the clinical heterogeneity of dementia. Here, we examined tau epitopes marking various stages of tangle maturation to test the hypotheses that tau maturation is more strongly associated with beta-amyloid compared to alpha-synuclein, and within the context of mixed pathology, mature tau is linked to Alzheimer's disease clinical phenotype and negatively associated with Lewy body dementia.
Methods: We used digital histology to measure percent area-occupied by pathology in cortical regions among individuals with pure Alzheimer's disease neuropathologic change, pure alpha-synucleinopathy, and a co-pathology group with both Alzheimer's and alpha-synuclein pathologic diagnoses.
Introduction: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods.
Methods: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere.
Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s).
View Article and Find Full Text PDFBackground And Objectives: CSF biomarkers β-amyloid 1-42 (Aβ), phosphorylated tau 181 (p-tau), total tau (t-tau), and neurogranin (Ng) can diagnose Alzheimer disease (AD) in life. However, it is unknown whether CSF concentrations, and thus their accuracies, are affected by concomitant pathologies common in AD, such as α-synuclein (αSyn). Our primary goal was to test whether biomarkers in patients with AD are altered by concomitant αSyn.
View Article and Find Full Text PDFQuantification of in vivo amyloid and tau PET imaging relationships with postmortem measurements are critical for validating the sensitivity and specificity imaging biomarkers across clinical phenotypes with Alzheimer disease neuropathologic change (ADNC). This study examined the quantitative relationship between regional binding of in vivo F-florbetapir amyloid PET and F-flortaucipir tau PET with postmortem stereological counts of amyloid plaques and neurofibrillary tangles (NFT) in a case of primary progressive aphasia (PPA) with ADNC, where neurodegeneration asymmetrically targets the left hemisphere. Beginning 2 years prior to death, a 63-year-old right-handed man presenting with agrammatic variant PPA underwent a florbetapir and flortaucpir PET scan, and neuropsychological assessments and magnetic resonance imaging sessions every 6 months.
View Article and Find Full Text PDFAlzheimer's disease neuropathologic change (ADNC) is clinically heterogenous and can present with a classic multidomain amnestic syndrome or focal non-amnestic syndromes. Here, we investigated the distribution and burden of phosphorylated and C-terminally cleaved tau pathologies across hippocampal subfields and cortical regions among phenotypic variants of Alzheimer's disease (AD). In this study, autopsy-confirmed patients with ADNC, were classified into amnestic (aAD, N = 40) and non-amnestic (naAD, N = 39) groups based on clinical criteria.
View Article and Find Full Text PDFNetwork analyses inform complex systems such as human brain connectivity, but this approach is seldom applied to gold-standard histopathology. Here, we use two complimentary computational approaches to model microscopic progression of the main subtypes of tauopathy versus TDP-43 proteinopathy in the human brain. Digital histopathology measures were obtained in up to 13 gray matter (GM) and adjacent white matter (WM) cortical brain regions sampled from 53 tauopathy and 66 TDP-43 proteinopathy autopsy patients.
View Article and Find Full Text PDFFrontotemporal lobar degeneration (FTLD) with either tau (FTLD-tau) or TDP-43 (FTLD-TDP) inclusions are distinct proteinopathies that frequently cause similar frontotemporal dementia (FTD) clinical syndromes. FTD syndromes often display macroscopic signatures of neurodegeneration at the level of regions and networks, but it is unclear if subregional laminar pathology display patterns unique to proteinopathy or clinical syndrome. We hypothesized that FTLD-tau and FTLD-TDP accumulate pathology in relatively distinct cortical layers independent of clinical syndrome, with greater involvement of lower layers in FTLD-tau.
View Article and Find Full Text PDFFrontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP.
View Article and Find Full Text PDFTau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.
View Article and Find Full Text PDFFrontotemporal lobar degeneration proteinopathies with tau inclusions (FTLD-Tau) or TDP-43 inclusions (FTLD-TDP) are associated with clinically similar phenotypes. However, these disparate proteinopathies likely differ in cellular severity and regional distribution of inclusions in white matter (WM) and adjacent grey matter (GM), which have been understudied. We performed a neuropathological study of subcortical WM and adjacent GM in a large autopsy cohort (n = 92; FTLD-Tau = 37, FTLD-TDP = 55) using a validated digital image approach.
View Article and Find Full Text PDFThe neurofibrillary tangles (NFT) and amyloid-ß plaques (AP) that comprise Alzheimer's disease (AD) neuropathology are associated with neurodegeneration and microglial activation. Activated microglia exist on a dynamic spectrum of morphologic subtypes that include resting, surveillant microglia capable of converting to activated, hypertrophic microglia closely linked to neuroinflammatory processes and AD neuropathology in amnestic AD. However, quantitative analyses of microglial subtypes and neurons are lacking in non-amnestic clinical AD variants, including primary progressive aphasia (PPA-AD).
View Article and Find Full Text PDFNeurodegeneration of the locus coeruleus (LC) in age-related neurodegenerative diseases such as Alzheimer's disease (AD) is well documented. However, detailed studies of LC neurodegeneration in the full spectrum of frontotemporal lobar degeneration (FTLD) proteinopathies comparing tauopathies (FTLD-tau) to TDP-43 proteinopathies (FTLD-TDP) are lacking. Here, we tested the hypothesis that there is greater LC neuropathology and neurodegeneration in FTLD-tau compared to FTLD-TDP.
View Article and Find Full Text PDFObjective: To investigate the association between admission plasma glucose and cardiovascular events in patients with acute myocardial infarction treated with modern therapies including early percutaneous coronary intervention and modern stents.
Methods: Patients ( = 5309) with established diabetes and patients without previously known diabetes with a reported admission plasma glucose, included in the VALIDATE trial 2014-2016, were followed for cardiovascular events (first of mortality, myocardial infarction, stroke, heart failure) within 180 days. Event rates were analysed by four glucose categories according to the World Health Organization criteria for hyperglycaemia and definition of diabetes.
The neuropathologic basis of in vivo cortical atrophy in clinical dementia syndromes remains poorly understood. This includes primary progressive aphasia (PPA), a language-based dementia syndrome characterized by asymmetric cortical atrophy. The neurofibrillary tangles (NFTs) and amyloid-ß plaques (APs) of Alzheimer's disease (AD) can cause PPA, but a quantitative investigation of the relationships between NFTs, APs and in vivo cortical atrophy in PPA-AD is lacking.
View Article and Find Full Text PDFActivation of microglia, the primary mediators of inflammation in the brain, is a major component of gliosis and neuronal loss in a number of age-related neurodegenerative disorders, such as Alzheimer's disease (AD). The role of activated microglia in white matter, and its relationship with cognitive decline during aging are unknown. The current study evaluated microglia densities in the white matter of postmortem specimens from cognitively normal young adults, cognitively normal older adults, and cognitive "SuperAgers," a unique group of individuals over age 80 whose memory test scores are at a level equal to or better than scores of 50-to-65-year-olds.
View Article and Find Full Text PDFObjective: To investigate the status of the basal forebrain cholinergic system in primary progressive aphasia (PPA) as justification for cholinergic therapy.
Methods: A cohort of 36 brains from PPA participants with the neuropathology of Alzheimer disease (PPA-AD, n = 14) or frontotemporal lobar degeneration (PPA-tau, n = 12; PPA-TDP, n = 10) were used for semiquantitative rating of degeneration and gliosis of basal forebrain cholinergic neurons (BFCN). A subpopulation of 5 PPA-AD and 7 control brains underwent detailed analysis of BFCN pathology and cortical cholinergic axonal loss employing immunohistochemical and histochemical methods and stereologic analysis.