Background Sex-specific differences in vasodilation are mediated in part by differences in cytosolic Ca handling, but how variations in mitochondrial Ca contributes to this effect remains unknown. Here, we investigated the extent to which mitochondrial Ca entry via the MCU (mitochondrial Ca uniporter) drives sex differences in vasoreactivity in resistance arteries. Methods and Results Enhanced vasodilation of mesenteric resistance arteries to acetylcholine (ACh) was reduced to larger extent in female compared with male mice in 2 genetic models of endothelial MCU ablation.
View Article and Find Full Text PDFSphingolipids, modified by dietary fatty acids, are integral components of plasma membrane and caveolae that are also vasoactive compounds. We hypothesized that dietary fatty acid saturation affects vasoconstriction to sphingosine-1-phosphate (S1P) through caveolar regulation of rho kinase. Wild type (WT) and caveolin-1-deficient (cav-1 KO) mice which lack vascular caveolae were fed a low-fat diet (LF), 60% high-saturated fat diet (lard, HF), or 60% fat diet with equal amounts of lard and n-3 polyunsaturated menhaden oil (MO).
View Article and Find Full Text PDFWe tested whether dietary fatty acids alter membrane composition shifting localization of signaling pathways within caveolae to determine their role in vascular function. Wild type (WT) and caveolin-1-deficient mice (cav-1 KO), required for vascular caveolae formation, were fed low fat (LF), high saturated fat (HF, 60% kcal from lard), or high-fat diet with 50:50 lard and n-3 polyunsaturated fatty acid-enriched menhaden oil (MO). HF and MO increased body weight and fat in WT but had less effect in cav-1 KO.
View Article and Find Full Text PDFThe multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine kinase important in transducing intracellular Ca2+ signals. While in vitro data regarding the role of CaMKII in the regulation of endothelial nitric oxide synthase (eNOS) are contradictory, its role in endothelial function in vivo remains unknown. Using two novel transgenic models to express CaMKII inhibitor peptides selectively in endothelium, we examined the effect of CaMKII on eNOS activation, NO production, vasomotor tone and blood pressure.
View Article and Find Full Text PDFAngiotensin-II (Ang-II) is a well-established mediator of vascular remodeling. The multifunctional calcium-calmodulin-dependent kinase II (CaMKII) is activated by Ang-II and regulates Erk1/2 and Akt-dependent signaling in cultured smooth muscle cells in vitro. Its role in Ang-II-dependent vascular remodeling in vivo is far less defined.
View Article and Find Full Text PDFBackground: Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension.
Methods And Results: Transgenic expression of a CaMKII peptide inhibitor in VSMCs (TG SM-CaMKIIN model) reduced the blood pressure response to chronic Ang II infusion.
The multifunctional Ca(2+)/calmodulin-dependent kinase II (CaMKII) is activated by vasoconstrictors in vascular smooth muscle cells (VSMC), but its impact on vasoconstriction remains unknown. We hypothesized that CaMKII inhibition in VSMC decreases vasoconstriction. Using novel transgenic mice that express the inhibitor peptide CaMKIIN in smooth muscle (TG SM-CaMKIIN), we investigated the effect of CaMKII inhibition on L-type Ca(2+) channel current (ICa), cytoplasmic and sarcoplasmic reticulum Ca(2+), and vasoconstriction in mesenteric arteries.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
November 2012
Vascular smooth muscle contraction occurs following an initial response to an increase in intracellular calcium concentration and a sustained response following increases in the sensitivity of contractile proteins to calcium (calcium sensitization). This latter process is regulated by the rhoA/rho kinase pathway and activated by serotonin. In multiple cell types, signaling molecules compartmentalize within caveolae to regulate their activation.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
October 2012
The maternal cardiovascular system undergoes hemodynamic changes during pregnancy via angiogenesis and vasodilation to ensure adequate perfusion of the placenta. Improper vascularization at the maternal-fetal interface can cause pregnancy complications and poor fetal outcomes. Recent evidence indicates that small conductance Ca(2+)-activated K(+) channel subtype 3 (SK3) contributes to vascular remodeling during pregnancy, and we hypothesized that abnormal SK3 channel expression would alter the ability of the maternal cardiovascular system to adapt to pregnancy demands and lead to poor fetal outcomes.
View Article and Find Full Text PDFExp Diabetes Res
June 2010
We hypothesized that rho/rho kinase plays a role in sex differences in vascular dysfunction of diabetics. Contractions to serotonin were greater in isolated aortic rings from nondiabetic males versus females and increased further in streptozotocin-induced diabetic males but not females. The increased contractions to serotonin in males were reduced by inhibitors of rho kinase (fasudil, Y27632 and H1152) despite no change in expression of rhoA or rho kinase.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
October 2009
The objective of this study was to determine if mechanisms involved in vascular dysfunction in type 2 diabetes differ with sex. Vascular reactivity, expression, and activation of rhoA and rho kinase were measured in aorta from male and female nondiabetic C57BLKS/J and diabetic BKS.Cg-m(+/+) Lepr(db)/J (db/db) mice, a model of type 2 diabetes.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2007
Objective: Studies have suggested that sex differences in endothelial function in part account for the lower incidence of cardiovascular disease in premenopausal women compared with men. Less is known about the role of smooth muscle. We hypothesized that signaling mechanisms that regulate calcium sensitivity in vascular muscle also play a role in determining sex differences in contractile function.
View Article and Find Full Text PDFObjective: Determining the role of specific muscarinic (M) receptor subtypes mediating responses to acetylcholine (ACh) has been limited by the specificity of pharmacological agents. Deletion of the gene for M5 receptors abolished response to ACh in cerebral blood vessels but did not affect dilation of coronary arteries. The goal of this study was to determine the M receptors mediating responses to ACh in coronary circulation using mice deficient in M2 or M3 receptors (M2-/-, M3-/-, respectively).
View Article and Find Full Text PDFCalcium ion (Ca2+) influx through voltage-gated Ca2+ channels is important for the regulation of vascular tone. Activation of L-type Ca2+ channels initiates muscle contraction; however, the role of T-type Ca2+ channels (T-channels) is not clear. We show that mice deficient in the alpha1H T-type Ca2+ channel (alpha(1)3.
View Article and Find Full Text PDF