The chondrocranium is a key structure of the skull, but our knowledge of its embryonic development is based mostly on investigations of few stages across taxa. Variation of chondrocranial features is known across species, but little is known about intraspecific variation, or its evolution in the context of domestication. Here, we investigated two specific structures of the chondrocranium in three windows of embryonic development.
View Article and Find Full Text PDFBackground: Domestication, including selective breeding, can lead to morphological changes of biomechanical relevance. In birds, limb proportions and sternum characteristics are of great importance and have been studied in the past for their relation with flight, terrestrial locomotion and animal welfare. In this work we studied the effects of domestication and breed formation in limb proportions and sternum characteristics in chicken (), mallard ducks () and Muscovy ducks ().
View Article and Find Full Text PDFDomestication provides an outstanding opportunity for biologists to explore the underpinnings of organismal diversification. In domesticated animals, selective breeding for exaggerated traits is expected to override genetic correlations that normally modulate phenotypic variation in nature. Whether this strong directional selection affects the sequence of tightly synchronized events by which organisms arise (ontogeny) is often overlooked.
View Article and Find Full Text PDFThe domestication of the fowl resulted in a large diversity of integumental structures in chicken breeds. Several integumental traits have been investigated from a developmental genetics perspective. However, their distribution among breeds and their developmental morphology remain unexplored.
View Article and Find Full Text PDFRadical transformation of the skull characterizes bird evolution. An increase in the relative size of the brain and eyes was presumably related to the loss of two bones surrounding the eye, the prefrontal and postorbital. We report that ossification centres of the prefrontal and postorbital are still formed in bird embryos, which then fuse seamlessly to the developing nasal and frontal bones, respectively, becoming undetectable in the adult.
View Article and Find Full Text PDFThe process of domestication has long fascinated evolutionary biologists, yielding insights into the rapidity with which selection can alter behaviour and morphology. Previous studies on dogs, cattle and pigeons have demonstrated that domesticated forms show greater magnitudes of morphological variation than their wild ancestors. Here, we quantify variation in skull morphology, modularity and integration in chickens and compare those to the wild fowl using three-dimensional geometric morphometrics and multivariate statistics.
View Article and Find Full Text PDFIn early theropod dinosaurs-the ancestors of birds-the hallux (digit 1) had an elevated position within the foot and had lost the proximal portion of its metatarsal. It no longer articulated with the ankle, but was attached at about mid-length of metatarsal 2 (mt2). In adult birds, the hallux is articulated closer to the distal end of mt2 at ground level with the other digits.
View Article and Find Full Text PDFFrom early dinosaurs with as many as nine wrist bones, modern birds evolved to develop only four ossifications. Their identity is uncertain, with different labels used in palaeontology and developmental biology. We examined embryos of several species and studied chicken embryos in detail through a new technique allowing whole-mount immunofluorescence of the embryonic cartilaginous skeleton.
View Article and Find Full Text PDFThe zygodactyl orientation of toes (digits II and III pointing forwards, digits I and IV pointing backwards) evolved independently in different extant bird taxa. To understand the origin of this trait in modern birds, we investigated the development of the zygodactyl foot of the budgerigar (Psittaciformes). We compared its muscular development with that of the anisodactyl quail (Galliformes) and show that while the musculus abductor digiti IV (ABDIV) becomes strongly developed at HH36 in both species, the musculus extensor brevis digiti IV (EBDIV) degenerates and almost disappears only in the budgerigar.
View Article and Find Full Text PDF