Background: Despite advancements, the goal of durable pulmonary vein isolation (PVI) in all patients undergoing ablation for atrial fibrillation (AF) remains elusive. New high-density mapping (HDM) allows detection of concealed low-voltage signals (CLVSs) that persist after PVI and may represent vulnerabilities in the lesion set.
Objective: The purpose of this study was to determine the incidence of CLVSs after PVI and the effect of CLVS ablation on outcomes.
The steroid hormone estrogen plays a critical role in female development and homeostasis. Estrogen mediates its effects through binding and activation of specific estrogen receptors alpha (ERalpha) and beta (ERbeta), members of the steroid/nuclear receptor family of ligand-induced transcription factors. Due to their intimate roles in genomic and nongenomic signaling pathways, these hormones and their receptors have been also implicated in the pathologies of a variety of cancers and metabolic disorders, and have been the target of large therapeutic development efforts.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
June 2007
Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of retinoic acid receptor (RAR)-mediated transcription.
View Article and Find Full Text PDFTuberin, the tuberous sclerosis 2 (TSC2) gene product, has been identified as a tumor suppressor protein genetically implicated in the pathology of tuberous sclerosis and the female-specific lung disease lymphangioleiomyomatosis. Tuberin and its predominant cytoplasmic binding partner hamartin have been shown to complex with a variety of intracellular signaling regulators and affect the processes of protein translation, cellular proliferation, cellular migration, and cellular transcription. In previous studies, we have presented evidence for tuberin binding to the calcium-dependent intracellular signaling protein calmodulin (CaM), overlap of tuberin CaM binding domain with a binding domain for estrogen receptor alpha, and the phosphorylation-associated nuclear localization of tuberin.
View Article and Find Full Text PDFThe TSC1 and TSC2 proteins, which function as a TSC1/TSC2 tumor suppressor complex, are associated with lymphangioleiomyomatosis (LAM), a genetic disorder characterized by the abnormal growth of smooth muscle-like cells in the lungs. The precise molecular mechanisms that modulate LAM cell growth remain unknown. We demonstrate that TSC2 regulates LAM cell growth.
View Article and Find Full Text PDFThe loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine the role of tumor suppressor TSC2 in the neoplastic potential of LAM cells.
View Article and Find Full Text PDFLymphangioleiomyomatosis (LAM) is a rare disease that occurs primarily in women and has been linked to both estrogen-mediated signaling events and mutations associated with the tuberous sclerosis complex 2 gene product tuberin. These two observations fostered the hypothesis that tuberin's impact on estrogen-mediated signaling might be through a direct interaction with the intracellular receptor for estrogen, estrogen receptor alpha (ERalpha). In the study presented here, tuberin was shown to co-immunoprecipitate and directly bind ERalpha through a domain localized within the carboxyl 73 amino acids of tuberin.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) 1 and TSC2 are thought to be involved in protein translational regulation and cell growth, and loss of their function is a cause of TSC and lymphangioleiomyomatosis (LAM). However, TSC1 also activates Rho and regulates cell adhesion. We found that TSC2 modulates actin dynamics and cell adhesion and the TSC1-binding domain (TSC2-HBD) is essential for this function of TSC2.
View Article and Find Full Text PDFNeural proliferation and differentiation control protein-1 (NPDC-1) is a protein expressed primarily in brain and lung and whose expression can be correlated with the regulation of cellular proliferation and differentiation. Embryonic differentiation in brain and lung has classically been linked to retinoid signaling, and we have recently characterized NPDC-1 as a regulator of retinoic acid-mediated events. Regulators of differentiation and development are themselves highly regulated and usually through multiple mechanisms.
View Article and Find Full Text PDFMethods Mol Biol
September 2004
In eukaryotic organisms gene expression is regulated through a variety of upstream transacting factors (transcription factors) whose primary function appears to be the targeting of coregulatory protein complexes, which interact with basal transcription machinery to define the relative rate of transcription for a specific gene. Understanding the regulatory forces mediating transcription factor activity has been the focus of both academic and industrial research efforts over the past 15 yr, and in this time frame a variety of methodologies have been developed for reconstituting and assaying transcription factor activities in mammalian cell environments. Presented here is a high-throughput version of one of these methodologies that can be readily adapted to the screening of a variety of transcription factors.
View Article and Find Full Text PDFThe mechanisms that regulate the diverse responses to estrogen (E2) are unknown. Loss of function of the tuberous sclerosis 2 gene (TSC2), a tumor suppressor gene, has been associated with a growth-promoting effect of E2. We hypothesized that tuberin, the protein product of TSC2, binds to estrogen receptors (ER) and regulates the growth effect of E2.
View Article and Find Full Text PDFA modified yeast one-hybrid screen was used to isolate proteins capable of interacting with the Vitamin D receptor (VDR) heterodimer complex while driving expression from a repressor Vitamin D response element (VDRE). Four of nine independent colonies recovered in the screen coded for full-length BAF60a, a component of the mammalian SWI/SNF complex. Deletion studies in yeast were unable to localize a unique region of BAF60a responsible for interaction with the heterodimer complex, as only the full-length protein would support reporter gene expression.
View Article and Find Full Text PDFBACKGROUND: The specificity of a nuclear receptor's ability to modulate gene expression resides in its ability to bind a specific lipophilic ligand, associate with specific dimerization partners and bind specific DNA sequences in the promoter regions of genes. This sequence of events appears to be the basis for targeting an additional regulatory complex composed of a variety of protein and RNA components that deliver signals for facilitation or inhibition of the RNA polymerase complex. Characterization of the tissue and cell-specific components of these coregulatory complexes appear to be integral to our understanding of nuclear receptor regulation of transcription.
View Article and Find Full Text PDFExtracts of the root and trunk barks of the Chinese tree Pseudolarix kaempferi, which contain pseudolaric acids, are used in Chinese medicine for treatment of fungal infections. Pseudolaric acid B (PLAB) is the major constituent that exhibits anti-fungal activity. The nuclear peroxisome proliferator-activator receptors (PPAR) were proposed as a cellular target for the action of PLAB and its analogs.
View Article and Find Full Text PDFJ Biol Chem
August 2002
Although the cellular functions of TSC2 and its protein product, tuberin, are not known, somatic mutations in the TSC2 tumor suppressor gene are associated with tumor development in lymphangioleiomyomatosis (LAM). We found that ribosomal protein S6 (S6), which exerts translational control of protein synthesis and is required for cell growth, is hyperphosphorylated in the smooth muscle-like cell lesions of LAM patients compared with smooth muscle cells from normal human blood vessels and trachea. Smooth muscle (SM) cells derived from these lesions (LAMD-SM) also exhibited S6 hyperphosphorylation, constitutive activation of p70 S6 kinase (p70S6K), and increased basal DNA synthesis.
View Article and Find Full Text PDFMutations in the tuberous sclerosis 2 (TSC2) gene product have been genetically linked to the pathology of both tuberous sclerosis (TSC) and the gender-specific lung disease, lymphangioleiomyomatosis (LAM). Both diseases are classified as disorders of cellular migration, proliferation, and differentiation. Earlier studies from our laboratory (1) linked TSC2 with steroid/nuclear receptor signaling.
View Article and Find Full Text PDF