Publications by authors named "Daniel Munoz-Mayorga"

Metabolic disorders such as insulin resistance and hypertension are potential risk factors for aging and neurodegenerative diseases. These conditions are reversed in Chromogranin A knockout (CgA-KO) mice. This study investigates the role of CgA in Alzheimer's disease (AD) and corticobasal degeneration (CBD).

View Article and Find Full Text PDF

Our previous studies have indicated that insulin resistance, hyperglycemia, and hypertension in aged wild-type (WT) mice can be reversed in mice lacking chromogranin-A (CgA-KO mice). These health conditions are associated with a higher risk of Alzheimer's disease (AD). CgA, a neuroendocrine secretory protein has been detected in protein aggregates in the brains of AD patients.

View Article and Find Full Text PDF

The accumulation of lipid droplets (LDs) in aging and Alzheimer's disease brains is considered a pathological phenomenon with unresolved cellular and molecular mechanisms. Utilizing stimulated Raman scattering (SRS) microscopy, we observed significant in situ LD accumulation in microglia of tauopathy mouse brains. SRS imaging, combined with deuterium oxide (DO) labeling, revealed heightened lipogenesis and impaired lipid turnover within LDs in tauopathy fly brains and human neurons derived from induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are intimately linked to bioenergetics and redox biology, contributing to cellular functioning and physiological signaling, but also acting as toxic agents during oxidative stress. Hence, the balance between pro-oxidant reactions and the activity of antioxidant defenses sustains a basal oxidative status, controls the increase of redox signaling, and mediates potential pathological events during oxidative stress. Maternal experience, especially during nursing, requires high energetic demands and expenditure to ensure the well-being of the offspring.

View Article and Find Full Text PDF

Sex and exposure to chronic stress have been identified as risk factors for developing Alzheimer's disease (AD). Although AD has been demonstrated to be more prevalent in females, sex is often overlooked in research studies, likely due to the complexity of the hormonal status. In female rats, the reproductive status can modulate the well-known increase in tau phosphorylation (pTau) caused by the exposure to acute physical and psychological stressors.

View Article and Find Full Text PDF

Prolactin (PRL) is known to exert neuroprotective effects against excitotoxic damage in the hippocampus of female rats, both in vitro and in vivo. It is still unknown whether this effect can be seen in the male hippocampus and intracellular signaling mediating such action. To assess this, adult male CD-1 mice were subjected to excitotoxic damage with kainic acid (KA; i.

View Article and Find Full Text PDF

Sex differences are important to consider when studying different psychiatric, neurodevelopmental, and neurodegenerative disorders, including Alzheimer's disease (AD). These disorders can be affected by dimorphic changes in the central nervous system and be influenced by sex-specific hormones and neuroactive steroids. In fact, AD is more prevalent in women than in men.

View Article and Find Full Text PDF