Purpose: The breakpoint for a 360° radiotherapy gantry is typically positioned at 180°. This arbitrary setting has not been systematically evaluated for efficiency and may cause redundant gantry rotation and extended setup times. Our study aimed to identify an optimal gantry breakpoint angle for a full-gantry proton therapy system, with the goal of minimizing gantry movement.
View Article and Find Full Text PDFPurpose: To assess any correlation between swallowing dysfunction and radiation dose to 5 subregions of the larynx.
Methods And Materials: A cohort of 136 patients with head and neck cancer, treated with either photon or proton radiation therapy, was assessed using an endpoint of patient-reported swallowing scores, evaluated with the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire-H&N35 survey, within 1 month after treatment. Five subregions of the larynx were contoured, and dosimetric metrics were extracted for each subregion as well as the total larynx.
Objectives: To investigate the relationship between nutritional supplementation and radiation dose to the pharyngeal constrictor muscles and larynx for head and neck (HN) cancer patients undergoing radiotherapy.
Methods: We retrospectively analyzed radiotherapy (RT) dose for 231 HN cancer patients, focusing on the pharyngeal constrictors and larynx. We defined nutritional supplementation as feeding tube utilization or >10% weight loss from baseline within 90 days after radiotherapy completion.
Purpose: Proton treatment plan perturbation by common dental fixtures such as amalgams (Am) and porcelain-fused-to-metal (PFM) crowns has, to date, been uncharacterized. Previous studies have been conducted to determine the physical effect of these materials within the beam path for single spots, but their effects on complex treatment plans and clinical anatomy have not yet been quantified. The present manuscript aims to study the effect of Am and PFM fixtures on proton treatment planning in a clinical setting.
View Article and Find Full Text PDFWith complex head and neck diseases that closely approximate crucial organs or have advanced spread and cannot be surgically resected, intensity modulated proton beam radiotherapy is favored due to its superior dose targeting through magnetic manipulation of the proton energy. A radiation mask and an oral positioning device immobilize craniofacial, cervical, and oral structures for accurate and reliable radiation delivery. Widely available prefabricated thermoplastic oral positioning devices are manufactured in standardized forms and materials that unpredictably affect the proton beams' pathways and range.
View Article and Find Full Text PDFPurpose: Finite proton range affords improved dose conformality of radiation therapy when patient regions-of-interest geometries are well characterized. Substantial changes in patient anatomy necessitate re-planning (RP) to maintain effective, safe treatment. Regularly planned verification scanning (VS) is performed to ensure consistent treatment quality.
View Article and Find Full Text PDFThe purpose of this study was to examine if the use of a bolus helmet when treating the head with intensity modulated proton therapy (IMPT) will maintain organs at risk (OAR) sparing while improving the clinical target volume (CTV) coverage. A bolus helmet is a device that aims to improve on the traditionally used range shifter in proton therapy by improving dose distribution characteristics. Ten patients were retrospectively selected who had 2 separate treatment planning scans performed, a scan with the bolus helmet and a second scan without.
View Article and Find Full Text PDFPurpose: Dental fixtures are commonplace in an aging, radiation treatment population. The current, local standard of practice in particle therapy is to employ treatment geometries to avoid delivery through implanted dental fixtures. The present study aims to observe the physical effect of delivering therapeutic proton beams through common dental fixture materials as prelude to an eventual goal of assessing the feasibility of using treatment geometries not specified for avoidance of oral implants.
View Article and Find Full Text PDFIntroduction: This study presents a comprehensive collision avoidance framework based on three-dimension (3D) computer-aided design (CAD) modeling, a graphical user interface (GUI) as peripheral to the radiation treatment planning (RTP) environment, and patient-specific plan parameters for intensity-modulated proton therapy (IMPT).
Methods: A stand-alone software application was developed leveraging the Varian scripting application programming interface (API) for RTP database object accessibility. The Collision Avoider software models the Hitachi ProBeat-V half gantry design and the Kuka robotic couch with triangle mesh structures.
Purpose: To successfully plan and treat a patient with diffuse angiosarcoma involving the face and scalp with intensity-modulated proton therapy (IMPT) before surgical resection.
Materials And Methods: A patient presented to the radiation oncology department for preoperative treatment of an angiosarcoma diffusely involving the face and scalp. A 4-field IMPT technique was used to create a homogeneous dose distribution to the entire target volume while sparing underlying critical structures from toxicity and low-dose spread.
Purpose: Radiation therapy (RT) is the standard treatment for patients with inoperable skin malignancies of the head and neck region (H&N), and as adjuvant treatment post surgery in patients at high risk for local or regional recurrence. This study reports clinical outcomes of intensity-modulated proton therapy (IMPT) for these malignancies.
Materials And Methods: We retrospectively reviewed cases involving 47 patients with H&N malignancies of the skin (squamous cell, basal cell, melanoma, Merkel cell, angiosarcoma, other) who underwent IMPT for curative intent between July 2016 and July 2019.
Purpose: To understand how verification computed tomography-quality assurance (CT-QA) scans influenced clinical decision-making to replan patients with head and neck cancer and identify predictors for replanning to guide intensity-modulated proton therapy (IMPT) clinical practice.
Patients And Methods: We performed a quality-improvement study by prospectively collecting data on 160 consecutive patients with head and neck cancer treated using spot-scanning IMPT who underwent weekly verification CT-QA scans. Kaplan-Meier estimates were used to determine the cumulative probability of a replan by week.
The head and neck (H&N) region is frequently replanned during intensity-modulated proton therapy (IMPT), but replanning disrupts clinical workflow and presents additional burden on patients. The purpose of this study was to establish a standard treatment planning approach to minimize H&N replanning by identifying a correlation between dosimetric variables and replan frequency. In a retrospective study of 27 bilateral oropharyngeal cancer patients treated with IMPT at a single institution, cases were evaluated using Fisher's exact tests and logistic regression for a significant relationship between replan frequency and the following variables: beam number, clinical target volume (CTV) coverage, presence of dental fillings, and robustness.
View Article and Find Full Text PDFBackground And Purpose: IMPT improves normal tissue sparing compared to VMAT in treating oropharyngeal cancer (OPC). Our aim was to assess if this translates into clinical benefits.
Materials And Methods: OPC patients treated with definitive or adjuvant IMPT or VMAT from 2013 to 2018 were included.
Purpose: At our institution, all proton patient plans undergo patient-specific quality assurance (PSQA) prior to treatment delivery. For intensity-modulated proton beam therapy, quality assurance is complex and time consuming, and it may involve multiple measurements per field. We reviewed our PSQA workflow and identified the steps that could be automated and developed solutions to improve efficiency.
View Article and Find Full Text PDFPurpose: The aim of this work was to develop an efficient daily quality assurance (QA) program with strict tolerance levels for pencil beam scanning (PBS) proton radiotherapy featuring simultaneous dosimetric testing on a single, nonuniform field.
Methods: A nonuniform field measuring beam output, proton range, and spot position was designed for delivery onto a Sun Nuclear Daily-QA 3 device. A custom acrylic block permitted simultaneous measurement of low- and high-energy proton ranges in addition to beam output.
Purpose: To develop a clinical infrastructure that allows for routine Monte Carlo dose calculation verification of spot scanning proton treatment plans and includes a simple biological model to aid in normal tissue protection.
Materials And Methods: A graphical processing unit accelerated Monte Carlo dose engine was used as the calculation engine for dose verification on spot scanning proton plans. An infrastructure was built around this engine that allows for seamless exporting of treatment plans from the treatment planning system and importing of dose distribution from the Monte Carlo calculation via DICOM (digital imaging and communications in medicine).
Purpose: To evaluate the dependence of an automatic match process on the size of the user-defined region of interest (ROI), the structure volume of interest (VOI), and changes in tumor volume when using cone-beam computed tomography (CBCT) for tumor localization and to compare these results with a gold standard defined by a physician's manual match.
Methods And Materials: Daily CBCT images for 11 patients with lung cancer treated with conventionally fractionated radiation therapy were retrospectively matched to a reference CT image using the Varian On Board Imager software (Varian, Palo Alto, CA) and a 3-step automatic matching protocol. Matches were performed with 3 ROI sizes (small, medium, large), with and without a structure VOI (internal target volume [ITV] or planning target volume [PTV]) used in the last step.
Purpose: Compton camera imaging (CCI) systems are currently under investigation for radiotherapy dose reconstruction and verification. The ability of such a system to provide real-time images during dose delivery will be limited by the computational speed of the image reconstruction algorithm. In this work, the authors present a fast and simple method by which to generate an initial back-projected image from acquired CCI data, suitable for use in a filtered back-projection algorithm or as a starting point for iterative reconstruction algorithms, and compare its performance to the current state of the art.
View Article and Find Full Text PDFIn humans, sympathetic vasoconstrictor nerves in the skin contribute to resting vascular tone and mediate reflex vasoconstrictor responses to body cooling. Although it is well recognized that type 2 diabetes mellitus (T2DM) is associated with peripheral neurovascular changes, it is unclear to what extent the thermal responsiveness of the cutaneous vasoconstrictor system is altered in individuals with relatively uncomplicated T2DM. We tested the hypothesis that skin sympathetic nerve activity (SSNA) is decreased at baseline and during body cooling in individuals with T2DM compared to healthy controls (C) of similar age and body size.
View Article and Find Full Text PDFPurpose: Improved radiotherapy dose delivery techniques over the past decade have increased the necessity for accurate, independent verification of delivered dose. Compton camera imaging (CCI) systems may have the potential to quantitatively reconstruct three-dimensional dose delivered to the patient with little or no a priori information.
Methods: In this work, the adequacy of a Compton camera imaging system for application to radiotherapy dose reconstruction is explored using analytical models of system spatial and dosimetric resolution.
A novel radiation targeted therapy is investigated for HER-2 positive breast cancers. The proposed concept combines two known approaches, but never used together for the treatment of advanced, relapsed or metastasized HER-2 positive breast cancers. The proposed radiation binary targeted concept is based on the anti HER-2 monoclonal antibodies (MABs) that would be used as vehicles to transport the nontoxic agent to cancer cells.
View Article and Find Full Text PDF