Publications by authors named "Daniel Moukouanga"

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box.

View Article and Find Full Text PDF

Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses.

View Article and Find Full Text PDF

The function of Jasmonate (JA) is well documented in different plant physiological processes as well as in the interactions with their environment. Mutants impaired in JA production and/or signaling are useful materials to study the function of this phytohormone. Genes involved in the JA biosynthesis pathway in rice have been described, but few mutants deficient in JA production and signaling have been identified.

View Article and Find Full Text PDF

Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies, while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatiotemporal root system development data and identifying developmental patterns within these data. The SmartRoot image-analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet () and maize ().

View Article and Find Full Text PDF

Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition.

View Article and Find Full Text PDF

Although it is now well-established that decorated lipo-chitooligosaccharide Nod factors are the key rhizobial signals which initiate infection/nodulation in host legume species, the identity of the equivalent microbial signaling molecules in the Frankia/actinorhizal association remains elusive. With the objective of identifying Frankia symbiotic factors we present a novel approach based on both molecular and cellular pre-infection reporters expressed in the model actinorhizal species Casuarina glauca. By introducing the nuclear-localized cameleon Nup-YC2.

View Article and Find Full Text PDF

Root nodule symbioses (RNS) allow plants to acquire atmospheric nitrogen by establishing an intimate relationship with either rhizobia, the symbionts of legumes or Frankia in the case of actinorhizal plants. In legumes, NIN (Nodule INception) genes encode key transcription factors involved in nodulation. Here we report the characterization of CgNIN, a NIN gene from the actinorhizal tree Casuarina glauca using both phylogenetic analysis and transgenic plants expressing either ProCgNIN::reporter gene fusions or CgNIN RNAi constructs.

View Article and Find Full Text PDF

Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca.

View Article and Find Full Text PDF