In soybean (Glycine max ), limiting whole-plant transpiration rate (TR) response to increasing vapor pressure deficit (VPD) has been associated with the 'slow-wilting' phenotype and with water-conservation enabling higher yields under terminal drought. Despite the promise of this trait, it is still unknown whether it has a genetic basis in soybean, a challenge limiting the prospects of breeding climate-resilient varieties. Here, we present the results of a first attempt at a high-throughput phenotyping of TR and stomatal conductance response curves to increasing VPD conducted on a soybean mapping population consisting of 140 recombinant inbred lines (RIL).
View Article and Find Full Text PDFAtmospheric vapor-pressure deficit (VPD) is increasing in many regions and has a large impact on plant productivity. A VPD increase leads to raising transpiration rate (TR) and soil-water demand, risking productivity penalties. Like water, nitrogen is critical to productivity, but the effect of VPD on legume nitrogen fixation is undocumented.
View Article and Find Full Text PDFGenetic manipulation of whole-plant transpiration rate (TR) response to increasing atmospheric vapor pressure deficit (VPD) is a promising approach for crop adaptation to various drought regimes under current and future climates. Genotypes with a non-linear TR response to VPD are expected to achieve yield gains under terminal drought, thanks to a water conservation strategy, while those with a linear response exhibit a consumptive strategy that is more adequate for well-watered or transient-drought environments. In wheat, previous efforts indicated that TR has a genetic basis under naturally fluctuating conditions, but because TR is responsive to variation in temperature, photosynthetically active radiation, and evaporative demand, the genetic basis of its response VPD per se has never been isolated.
View Article and Find Full Text PDFNocturnal transpiration, through its circadian control, plays a role in modulating daytime transpiration response to increasing evaporative demand, to potentially enable drought tolerance in wheat. Limiting plant transpiration rate (TR) in response to increasing vapor pressure deficit (VPD) has been suggested to enable drought tolerance through water conservation. However, there is very little information on the extent of diversity of TR response curves to "true" VPD (i.
View Article and Find Full Text PDF