Publications by authors named "Daniel Milshteyn"

Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals' depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable.

View Article and Find Full Text PDF

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation.

View Article and Find Full Text PDF

Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation.

View Article and Find Full Text PDF

The structural diversity of lipids underpins the biophysical properties of cellular membranes, which vary across all scales of biological organization. Because lipid composition results from complex metabolic and transport pathways, its experimental control has been a major goal of mechanistic membrane biology. Here, we argue that in the wake of synthetic biology, similar metabolic engineering strategies can be applied to control the composition, physicochemical properties, and function of cell membranes.

View Article and Find Full Text PDF

Transmembrane proton gradients coupled to, and maintained by, electron transport are ubiquitous sources of chemiosmotic energy in all life today, but how this system first emerged is uncertain. Here we report a model liposome system in which internal ferricyanide serves as an oxidant and external ascorbate or dithionite provide a source of electrons to electron carriers embedded in liposome membranes. Quinones linked the donor to the acceptor in a coupled redox reaction that released protons into the vesicle internal volume as electrons were transported across the membranes, thereby producing substantial pH gradients.

View Article and Find Full Text PDF

There is a general assumption that amphiphilic compounds, such as fatty acids, readily form membranous vesicles when dispersed in aqueous phases. However, from earlier studies, it is known that vesicle stability depends strongly on pH, temperature, chain length, ionic concentration and the presence or absence of divalent cations. To test how robust simple amphiphilic compounds are in terms of their ability to assemble into stable vesicles, we chose to study 10- and 12-carbon monocarboxylic acids and a mixture of the latter with its monoglyceride.

View Article and Find Full Text PDF