Publications by authors named "Daniel Messmer"

Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules.

View Article and Find Full Text PDF

Understanding the mechanisms of antibiotic resistance is critical for the development of new therapeutics. Traditional methods for testing bacteria are often limited in their efficiency and reusability. Single bacterial cells can be studied at high throughput using double emulsions, although the lack of control over the oil shell permeability and limited access to the droplet interior present serious drawbacks.

View Article and Find Full Text PDF

Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context.

View Article and Find Full Text PDF

Structural colors are produced by wavelength-dependent scattering of light from nanostructures. While living organisms often exploit phase separation to directly assemble structurally colored materials from macromolecules, synthetic structural colors are typically produced in a two-step process involving the sequential synthesis and assembly of building blocks. Phase separation is attractive for its simplicity, but applications are limited due to a lack of robust methods for its control.

View Article and Find Full Text PDF

Photo-ATRP has recently emerged as a powerful technique that allows for oxygen-tolerant polymerizations and the preparation of polymers with low dispersity and high end-group fidelity. However, the effect of various photo-ATRP components on oxygen consumption and polymerization remains elusive. Herein, we employ an in situ oxygen probe and UV-vis spectroscopy to elucidate the effects of ligand, initiator, monomer, and solvent on oxygen consumption.

View Article and Find Full Text PDF

Horseradish peroxidase isoenzyme C (HRP) and proteinase K (proK) were immobilized inside macro- and mesoporous silica monoliths. Stable immobilization was achieved through simple noncovalent adsorption of conjugates, which were prepared from a polycationic, water-soluble second generation dendronized polymer (denpol) and the enzymes. Conjugates prepared from three denpols with the same type of repeating unit (r.

View Article and Find Full Text PDF

The width and shape of molecular weight distributions can significantly affect the properties of polymeric materials and thus are key parameters to control. This mini-review aims to critically summarise recent approaches developed to tailor molecular weight distributions and highlights the strengths and limitations of each technique. Special emphasis will also be given to applications where tuning the molecular weight distribution has been used as a strategy to not only enhance polymer properties but also to increase the fundamental understanding behind complex mechanisms and phenomena.

View Article and Find Full Text PDF

We present a comprehensive investigation of main-chain scission processes affecting peripherally charged and neutral members of a class of dendronized polymers (DPs) studied in our laboratory. In these thick, sterically highly congested macromolecules, scission occurs by exposure to solvents, in some cases at room temperature, in others requiring modest heating. Our investigations rely on gel permeation chromatography and atomic force microscopy and are supported by molecular dynamics simulations as well as by electron paramagnetic resonance spectroscopy.

View Article and Find Full Text PDF

Dendronized polymers (DPs) are large and compact main-chain linear polymers with a cylindrical shape and cross-sectional diameters of up to ∼15 nm. They are therefore considered molecular objects, and it was of interest whether given their experimentally accessible, well-defined dimensions, the density of individual DPs could be determined. We present measurements on individual, deposited DP chains, providing molecular dimensions from scanning and transmission electron microscopy and mass-per-length values from quantitative scanning transmission electron microscopy.

View Article and Find Full Text PDF

Supramolecular assemblies with controlled morphology are of paramount importance for energy transport in organic semiconductors. Despite considerable freedom in molecular design, the preparation of dyes that form one dimensional J-aggregates is challenging. Here, we demonstrate a simple and effective route to functionalize dendronized polymers (DPs) with J-aggregates to construct tubular DP/J-aggregate nanowires.

View Article and Find Full Text PDF

The backbone conformations of individual, unperturbed synthetic macromolecules have so far not been observed directly in spite of their fundamental importance to polymer physics. Here we report the dilute solution conformations of two types of linear dendronized polymers, obtained by cryogenic transmission electron stereography and tomography. The three-dimensional trajectories show that the wormlike chain model fails to adequately describe the scaling of these thick macromolecules already beyond a few nanometers in chain length, in spite of large apparent persistence lengths and long before a signature of self-avoidance appears.

View Article and Find Full Text PDF

Microbial transglutaminase (MTG) was stably solid-phase immobilized on glass microbeads by using a second-generation dendronized polymer. Immobilized MTG enabled the efficient generation of site-specifically conjugated proteins, including antibody fragments, as well as whole antibodies through distinct glutamines and, unprecedentedly, also through lysines with various bifunctional substrates with defined stoichiometries. With this method, we generated dual, site-specifically modified antibodies comprising a fluorescent probe and a metal chelator for radiolabeling-a strategy anticipated to design antibodies for imaging and simultaneous therapy.

View Article and Find Full Text PDF

Dendronized polymer-enzyme conjugates are large, water-soluble macromolecular structures built from a linear, fully synthetic, dendronized polymer (denpol), and several copies of enzyme molecules covalently bound to the peripheral functional groups of the denpol. Since denpol chains comprise repeating units with regularly branched side chains (dendrons), denpols have a cylindrical shape and are much thicker than conventional linear polymers. Depending on the dendron generation and chemical structure, denpols may have a large number of functional groups on their surface, exposed to the aqueous medium in which they are dissolved.

View Article and Find Full Text PDF

Aspects of size, structural (im)perfection, inner density, and guest molecule loading capacity of dendronized polymers (DPs) of high generation (6≤g≤8) in aqueous solution are studied using electron paramagnetic resonance spectroscopy on amphiphilic, spin-labeled guest molecules. The results show that the interior of the charged DPs is strongly polar, especially in comparison to their lower generation (1-4) analogues. This is a direct sign that large amounts of water penetrate the DP surface, reflecting the structural (im)perfections of these high-generation DPs and much lower segmental densities than theoretically achievable.

View Article and Find Full Text PDF