Advancing imaging technologies are drastically increasing the rate of marine video and image data collection. Often these datasets are not analysed to their full potential as extracting information for multiple species is incredibly time-consuming. This study demonstrates the capability of the open-source interactive machine learning tool, RootPainter, to analyse large marine image datasets quickly and accurately.
View Article and Find Full Text PDFUnlabelled: Transport in porous media plays an essential role for many physical, engineering, biological and environmental processes. Novel synchrotron imaging techniques and image-based models have enabled more robust quantification of geometric structures that influence transport through the pore space. However, image-based modelling is computationally expensive, and end users often require, while conducting imaging campaign, fast and agile bulk-scale effective parameter estimates that account for the pore-scale details.
View Article and Find Full Text PDFPhosphorus is an essential nutrient for crops. Precise spatiotemporal application of P fertilizer can improve plant P acquisition and reduce run-off losses of P. Optimizing application would benefit from understanding the dynamics of P release from a fertilizer pellet into bulk soil, which requires space- and time-resolved measurements of P concentration in soil solutions.
View Article and Find Full Text PDFRoot citrate exudation is thought to be important for phosphate solubilization. Previous research has concluded that cluster-like roots benefit most from this exudation in terms of increased phosphate uptake, suggesting that root structure plays an important role in citrate-enhanced uptake (additional phosphate uptake due to citrate exudation). Time-resolved computed tomography images of wheat root systems were used as the geometry for 3D citrate-phosphate solubilization models.
View Article and Find Full Text PDFIn this paper, we use multiple scale homogenisation to derive a set of averaged macroscale equations that describe the movement of nutrients in partially saturated soil that contains growing potato tubers. The soil is modelled as a poroelastic material, which is deformed by the growth of the tubers, where the growth of each tuber is dependent on the uptake of nutrients via a sink term within the soil representing root nutrient uptake. Special attention is paid to the reduction in void space, resulting change in local water content and the impact on nutrient diffusion within the soil as the tubers increase in size.
View Article and Find Full Text PDF