Background: Sampling expeditions to Churchill in the Canadian subarctic were completed with the aim of compiling a molecular-assisted survey of the macroalgal flora (seaweeds) for comparison to published accounts for this area, which are based on morphological identifications. Further, because the Churchill region was covered by ice until recently (~10,000 before present), the current algal flora has had to migrate from adjacent waters into that region. We used our DNA barcode data to predict the relative contribution of the North Atlantic and North Pacific floras (Likely Source Region) in repopulating the Churchill region following the most recent glacial retreat.
View Article and Find Full Text PDFMethods Mol Biol
December 2012
This chapter outlines the current practices used in our laboratory for routine DNA barcode analyses of the three major marine macroalgal groups, viz., brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta) algae, as well as for the microscopic diatoms (Bacillariophyta). We start with an outline of current streamlined field protocols, which facilitate the collection of substantial (hundreds to thousands) specimens during short (days to weeks) field excursions.
View Article and Find Full Text PDFCytokine transcription is usually regulated by transcription factor binding and chromatin remodeling following an inducing signal. By contrast, these data showed the interleukin (IL)-1beta promoter assembles into a "poised" structure, as evidenced by nuclease accessibility and loss of core histones immediately surrounding the transcription start site. Strikingly, these properties do not change upon transcriptional activation by lipopolysaccharide.
View Article and Find Full Text PDFTranscription factor-mediated immunoglobulin (Ig) enhancer activation has been analyzed extensively outside the physiological constraints of chromatin. Towards understanding the role sequence-specific DNA binding proteins identified by these methods play in activating Ig genes during B cell development, we have investigated in vivo interaction between the Ig enhancer activator PU.1 and two target elements, the Igmu and kappa3' enhancers, by chromatin immunoprecipitation (ChIP).
View Article and Find Full Text PDFThe Igkappa locus is recombined following initiation of a signaling cascade during the early pre-B stage of B cell development. The Ig kappa3' enhancer plays an important role in normal B cell development by regulating kappa locus activation. Quantitative analyses of kappa3' enhancer chromatin structure by restriction endonuclease accessibility and protein association by chromatin immunoprecipitation in a developmental series of primary murine B cells and murine B cell lines demonstrate that the enhancer is activated progressively through multiple steps as cells mature.
View Article and Find Full Text PDFThe immunoglobulin heavy chain enhancer, or mu enhancer, is required for B cell development. Only the appropriate combination of transcription factors results in B cell-specific enhancer activation. HMGA1 (formerly (HMG-I(Y)) is a proposed co-activator of the ETS transcription factors required for mu enhancer activity.
View Article and Find Full Text PDF