Publications by authors named "Daniel McCorkle"

Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions.

View Article and Find Full Text PDF

The threat that ocean acidification (OA) poses to marine ecosystems is now recognized and U.S. funding agencies have designated specific funding for the study of OA.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide (CO2) is being absorbed into the ocean, altering seawater chemistry, with potentially negative impacts on a wide range of marine organisms. The early life stages of invertebrates with internal and external aragonite structures may be particularly vulnerable to this ocean acidification. Impacts to cephalopods, which form aragonite cuttlebones and statoliths, are of concern because of the central role they play in many ocean ecosystems and because of their importance to global fisheries.

View Article and Find Full Text PDF

Ocean acidification, characterized by elevated pCO₂ and the associated decreases in seawater pH and calcium carbonate saturation state (Ω), has a variable impact on the growth and survival of marine invertebrates. Larval stages are thought to be particularly vulnerable to environmental stressors, and negative impacts of ocean acidification have been seen on fertilization as well as on embryonic, larval, and juvenile development and growth of bivalve molluscs. We investigated the effects of high CO₂ exposure (resulting in pH = 7.

View Article and Find Full Text PDF

Sea surface temperature (SST) across much of the tropics has increased by 0.4 degrees to 1 degrees C since the mid-1970s. A parallel increase in the frequency and extent of coral bleaching and mortality has fueled concern that climate change poses a major threat to the survival of coral reef ecosystems worldwide.

View Article and Find Full Text PDF