Publications by authors named "Daniel Martin-Ramos"

The ability of Halomonas maura to bioprecipitate carbonate and sulphate crystals in solid media at different manganese concentrations has been demonstrated in this study for the first time. The precipitated minerals were studied by X-ray diffraction, scanning and transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The precipitated minerals were different based on the manganese concentration present in the medium and the incubation time.

View Article and Find Full Text PDF

A bench-scale granular autotrophic nitrogen removal bioreactor (completely autotrophic nitrogen removal over nitrite (CANON) system) used for the treatment of synthetic wastewater was analyzed for the identification of microbiota with potential capacity for carbonate and phosphate biomineral formation. 16S ribosomal RNA (rRNA) gene-based studies revealed that different bacterial species found in the granular biomass could trigger the formation of phosphate and calcite minerals in the CANON bioreactor. iTag analysis of the microbial community in the granular biomass with potential ability to precipitate calcium carbonate and hydroxyapatite constituted around 0.

View Article and Find Full Text PDF

The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%.

View Article and Find Full Text PDF

The production of Mg-rich carbonates by Idiomarina bacteria at modern seawater salinities has been investigated. With this objective, four strains: Idiomarina abyssalis (strain ATCC BAA-312), Idiomarina baltica (strain DSM 15154), Idiomarina loihiensis (strains DSM 15497 and MAH1) were used. The strain I.

View Article and Find Full Text PDF

An experimental and theoretical investigation on crystal forms of the popular and ubiquitous pharmaceutical Minoxidil is presented here. A new crystallization method is presented for Minoxidil (6-(1-piperidinyl)-2,4-pyrimidinediamide 3-oxide) in ethanol-poly(ethylene glycol), yielding crystals with good quality. The crystal structure is determined at low temperature, with a final R value of 0.

View Article and Find Full Text PDF

This paper investigates the thermal and irradiation-dependent dehydration and kinetics occurring in Na2SO4.10H2O (mirabilite) and MgSO4.7H2O (epsomite) at room conditions by using powder X-ray thermodiffraction.

View Article and Find Full Text PDF

The thermal dehydration of epsomite (MgSO4*7H2O) crystals grown in the presence and absence of organic additives (phosphonates, carboxylic acids, and polyacrylic acid derivatives) was studied by means of thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray thermodiffraction (XRTD), and environmental scanning electron microscopy (ESEM). In situ XRTD analyses (in air, 30% relative humidity) show an -->epsomite hexahydrite (MgSO4*6H2O) transition at 25-38 degrees C, followed by formation of amorphous phase(s) at T > 43-48 degrees C, and MgSO4 crystallization at approximately 300 degrees C. Kinetic parameters (E(alpha) and A) were determined for the main dehydration step (25-160 degrees C), which corresponds to a MgSO4*7H2O-->MgSO4*H2O transition, by applying two isoconversional methods to nonisothermal TG data obtained at different heating rates (beta= 1, 3, and 5 K*min-1).

View Article and Find Full Text PDF