Mountain papaya ( Vasconcellea pubescens ) is a climacteric fruit that develops a strong and characteristic aroma during ripening. Esters are the main volatile compounds produced by the fruit, and most of them are dependent on ethylene. As esters are synthesized through alcohol acyltransferases (AAT), a full-length cDNA (VpAAT1) was isolated that displayed the characteristic motifs of most plant acyltransferases.
View Article and Find Full Text PDFAlcohol acyltransferases (AAT) play a key role in the biosynthesis of ester aroma volatiles in fruit. Three ripening-specific recombinant AATs of cantaloupe Charentais melon fruit (Cm-AAT1, Cm-AAT3, and Cm-AAT4) are capable of synthesizing thioether esters with Cm-AAT1 being by far the most active. All proteins, as well as AAT(s) extracted from melon fruit, are active as tetramers of around 200 kDa.
View Article and Find Full Text PDFAlcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated.
View Article and Find Full Text PDFVolatile esters, a major class of compounds contributing to the aroma of many fruit, are synthesized by alcohol acyl-transferases (AAT). We demonstrate here that, in Charentais melon (Cucumis melo var. cantalupensis), AAT are encoded by a gene family of at least four members with amino acid identity ranging from 84% (Cm-AAT1/Cm-AAT2) and 58% (Cm-AAT1/Cm-AAT3) to only 22% (Cm-AAT1/Cm-AAT4).
View Article and Find Full Text PDF