Genetic variation operators in grammar-guided genetic programming are fundamental to guide the evolutionary process in search and optimization problems. However, they show some limitations, mainly derived from an unbalanced exploration and local-search trade-off. This paper presents an estimation of distribution algorithm for grammar-guided genetic programming to overcome this difficulty and thus increase the performance of the evolutionary algorithm.
View Article and Find Full Text PDFIn the field of artificial intelligence (AI) one of the main challenges today is to make the knowledge acquired when performing a certain task in a given scenario applicable to similar yet different tasks to be performed with a certain degree of precision in other environments. This idea of knowledge portability is of great use in Cyber-Physical Systems (CPS) that face important challenges in terms of reliability and autonomy. This article presents a CPS where unmanned vehicles (drones) are equipped with a reinforcement learning system so they may automatically learn to perform various navigation tasks in environments with physical obstacles.
View Article and Find Full Text PDFAmbient Intelligence is currently a lively application domain of Artificial Intelligence and has become the central subject of multiple initiatives worldwide. Several approaches inside this domain make use of knowledge bases or knowledge graphs, both previously existing and ad hoc. This form of representation allows heterogeneous data gathered from diverse sources to be contextualized and combined to create relevant information for intelligent systems, usually following higher level constraints defined by an ontology.
View Article and Find Full Text PDFWe present a P system with replicated rewriting to solve the Maximum Clique Problem for a graph. Strings representing cliques are built gradually. This involves the use of inhibitors that control the space of all generated solutions to the problem.
View Article and Find Full Text PDF