Publications by authors named "Daniel Mania"

The greenhouse gas nitrous oxide (NO) has strong potential to drive climate change. Soils are a major source of NO, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the , , , and genes, which sequentially reduce nitrate (NO) to nitrite (NO), nitric oxide (NO), NO, and dinitrogen (N).

View Article and Find Full Text PDF

Bradyrhizobia are common members of soil microbiomes and known as N -fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N O. Inoculation with compatible rhizobia is often needed for optimal N -fixation, but the choice of inoculant may have consequences for N O emission.

View Article and Find Full Text PDF

Fungal denitrification is claimed to produce non-negligible amounts of N O in soils, but few tested species have shown significant activity. We hypothesized that denitrifying fungi would be found among those with assimilatory nitrate reductase, and tested 20 such batch cultures for their respiratory metabolism, including two positive controls, Fusarium oxysporum and Fusarium lichenicola, throughout the transition from oxic to anoxic conditions in media supplemented with . Enzymatic reduction of (NIR) and NO (NOR) was assessed by correcting measured NO- and N O-kinetics for abiotic NO- and N O-production (sterile controls).

View Article and Find Full Text PDF

Bradyrhizobia are abundant soil bacteria, which can form nitrogen-fixing symbioses with leguminous plants, including important crops such as soybean, cowpea and peanut. Many bradyrhizobia can denitrify, but studies have hitherto focused on a few model organisms. We screened 39 diverse Bradyrhizobium strains, isolated from legume nodules.

View Article and Find Full Text PDF

Bacillus vireti is a nitrate-ammonifying bacterium and a partial denitrifier, reducing NO3 (-) , NO2 (-) , NO and N2 O with NarG, NrfA, CbaA and NosZ respectively. Growth is optimized through successive use of the electron acceptors O2 and NO3 (-) , followed by NO2 (-) , NO and N2 O. Fermentation takes place simultaneously with anaerobic respiration.

View Article and Find Full Text PDF

Denitrification in agricultural soils is a major source of N2O. Legume crops enhance N2O emission by providing N-rich residues, thereby stimulating denitrification, both by free-living denitrifying bacteria and by the symbiont (rhizobium) within the nodules. However, there are limited data concerning N2O production and consumption by endosymbiotic bacteria associated with legume crops.

View Article and Find Full Text PDF

Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite.

View Article and Find Full Text PDF

Several Gram-positive bacteria carry genes for anaerobic reduction of NO3(-) via NO2(-) to NH4(+) or gaseous nitrogen compounds, but the processes are understudied for these organisms. Here, we present results from a whole-genome analysis of the soil bacterium Bacillus vireti and a phenotypic characterization of intermediate and end-products, formed under anoxic conditions in the presence of NO3(-). Bacillus vireti has a versatile metabolism.

View Article and Find Full Text PDF

In the absence of landmark proteins, hyphae of Aspergillus nidulans lose their direction of growth and show a zigzag growth pattern. Here, we show that the cell-end marker protein TeaA is important for localizing the growth machinery at hyphal tips. The central position of TeaA at the tip correlated with the convergence of the microtubule (MT) ends to a single point.

View Article and Find Full Text PDF

Many short cationic peptides have been identified as potent antimicrobial agents, but their modes of action are not well understood. Peptide synthesis on cellulose membranes has resulted in the generation of peptide libraries, while high-throughput assays have been developed to test their antibacterial activities. In this paper a microtiter plate-based screening method for fungi has been developed and used to test nine antibacterial peptides against the model fungus Aspergillus nidulans.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp60fmnhanv5ish42doa3f373vkr2igrc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once