Publications by authors named "Daniel Magoon"

Wilms tumor 1 (WT1) is a zinc finger transcriptional regulator, and has been implicated as both a tumor suppressor and oncogene in various malignancies. Mutations in the DNA-binding domain of the gene are described in 10-15% of normal-karyotype AML (NK-AML) in pediatric and adult patients. Similar mutations have been reported in adult patients with myelodysplastic syndrome (MDS).

View Article and Find Full Text PDF

Background: Plerixafor, a reversible CXCR4 antagonist, inhibits interactions between leukemic blasts and the bone marrow stromal microenvironment and may enhance chemosensitivity. A phase 1 trial of plerixafor in combination with intensive chemotherapy in children and young adults with relapsed or refractory acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and myelodysplastic syndrome (MDS) was performed to determine a tolerable and biologically active dose.

Procedure: Plerixafor was administered daily for 5 days at four dose levels (6, 9, 12, and 15 mg/m /dose) followed 4 hr later by high-dose cytarabine (every 12 hr) and etoposide (daily).

View Article and Find Full Text PDF

Purpose: To determine a safe and biologically active dose of quizartinib (AC220), a potent and selective class III receptor tyrosine kinase (RTK) FLT3 inhibitor, in combination with salvage chemotherapy in children with relapsed acute leukemia.

Experimental Design: Quizartinib was administered orally to children with relapsed AML or MLL-rearranged ALL following 5 days of high-dose cytarabine and etoposide (AE). A 3+3 dose escalation design was used to identify a safe and biologically active dose.

View Article and Find Full Text PDF

The importance of the cell surface receptor CXCR4 and the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) is well-established in normal and malignant hematopoiesis. The Protein Epitope Mimetic POL5551 is a novel and potent antagonist of CXCR4. POL5551 efficiently mobilizes hematopoietic stem and progenitor cells, but its effects in acute lymphoblastic leukemia (ALL) have not been reported.

View Article and Find Full Text PDF

Background: Ruxolitinib, an orally bioavailable JAK1/JAK2 inhibitor, may treat cancers with CRLF2 and/or JAK pathway mutations.

Procedure: A phase 1 trial of ruxolitinib was performed to determine the maximum tolerated or recommended phase 2 dose, dose-limiting toxicities (DLTs), pharmacokinetics (PK), and pharmacodynamics (PD) in children with recurrent/refractory solid tumors (STs). Ruxolitinib was administered twice daily (BID) in 28-day cycles at five dose levels (15, 21, 29, 39, and 50 mg/m(2)/dose).

View Article and Find Full Text PDF

In spite of advances in the treatment of pediatric acute lymphoblastic leukemia (ALL), a significant number of children with ALL are not cured of their disease. We and others have shown that signaling from the bone marrow microenvironment confers therapeutic resistance, and that the interaction between CXCR4 and stromal cell-derived factor-1 (SDF-1 or CXCL12) is a key mediator of this effect. We demonstrate that ALL cells that upregulate surface CXCR4 in response to chemotherapy treatment are protected from chemotherapy-induced apoptosis when co-cultured with bone marrow stroma.

View Article and Find Full Text PDF

Cytoplasmic nucleophosmin (NPMc(+)) mutations and FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations are two of the most common known molecular alterations in acute myeloid leukemia (AML); they frequently occur together, suggesting cooperative leukemogenesis. To explore the specific relationship between NPMc+ and FLT3/ITD in vivo, we crossed Flt3/ITD knock-in mice with transgenic NPMc+ mice. Mice with both mutations develop a transplantable leukemia of either myeloid or lymphoid lineage, definitively demonstrating cooperation between Flt3/ITD and NPMc+.

View Article and Find Full Text PDF

Unlabelled: Cure rates in pediatric acute leukemias remain suboptimal. Overexpression of the cell-surface chemokine receptor CXCR4 is associated with poor outcome in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Certain nonchemotherapeutic agents have been shown to modulate CXCR4 expression and alter leukemia interactions with stromal cells in the bone marrow microenvironment.

View Article and Find Full Text PDF

Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlv4ppat86ug98m8mj4kc8e83thnhop43): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once