Single-molecule fluorescence microscopy with "turn-on" dyes that change fluorescent state after a reaction report on the chemistry of interfaces relevant to analytical and bioanalytical chemistry. Paramount to accurately understanding the phenomena at the ultimate detection limit of a single molecule is ensuring fluorophore properties such as diffusion do not obscure the chemical reaction of interest. Here, we develop Monte Carlo simulations of a dye that undergoes reduction to turn-on at the cathode of a corroded iron surface taking into account the diffusion of the dye molecules in a total internal reflection fluorescence (TIRF) excitation volume, location of the cathode, and chemical reactions.
View Article and Find Full Text PDF