Objectives: Standard diagnostic measures focus on threshold elevation but hearing concerns may occur independently of threshold elevation - referred to as "hidden hearing loss" (HHL). A deeper understanding of HHL requires measurements that locate dysfunction along the auditory pathway. This study aimed to describe the relationship and interdependence between certain behavioural and physiological measures of auditory function that are thought to be indicative of HHL.
View Article and Find Full Text PDFBackground: Nonlinear frequency compression (NFC) is a signal processing technique designed to lower high-frequency inaudible sounds for a listener to a lower frequency that is audible. Because the maximum frequency that is audible to a listener with hearing loss will vary with the input speech level, the input level used to set NFC could impact speech recognition.
Purpose: The purpose of this study was to determine the influence of the input level used to set NFC on nonsense syllable recognition.
Purpose: The aims of this study were to (a) demonstrate the feasibility of administering categorical loudness scaling (CLS) tests in a remote setting, (b) assess the reliability of remote compared with laboratory CLS results, and (c) provide preliminary evidence of the validity of remote CLS testing.
Method: CLS data from 21 adult participants collected in a home setting were compared to CLS data collected in a laboratory setting from previous studies. Five participants took part in studies in both settings.
Objectives: Despite a diagnosis of normal hearing, many people experience hearing disability (HD) in their everyday lives. This study assessed the ability of a number of demographic and auditory variables to explain and predict self-reported HD in people regarded as audiologically healthy via audiometric thresholds.
Design: One-hundred eleven adults (ages 19 to 74) with clinically normal hearing (i.
Categorical loudness scaling (CLS) measures provide useful information about an individual's loudness perception across the dynamic range of hearing. A probability model of CLS categories has previously been described as a multi-category psychometric function (MCPF). In the study, a representative "catalog" of potential listener MCPFs was used in conjunction with maximum-likelihood estimation to derive CLS functions for participants with normal hearing and with hearing loss.
View Article and Find Full Text PDFUse of the auditory brainstem response (ABR) in research has increased in the search for physiological correlates of noise-induced damage to the cochlea. The extraction of data from the ABR has traditionally relied on visual determination of peaks and troughs to calculate metrics such as wave amplitude. Visual determination can be reliable when evaluated by trained, experienced personnel, but noisy waveforms and overlapping waves produce uncertain data.
View Article and Find Full Text PDFDistortion-product otoacoustic emission (DPOAE) and stimulus-frequency otoacoustic emission (SFOAE) are two types of acoustic signals emitted by the inner ear in response to tonal stimuli. The levels of both emission types may be reduced by the inclusion of additional (suppressor) tones with the stimulus. Comparison of two-tone suppression properties across emission type addresses a clinically relevant question of whether these two types of emission provide similar information about cochlear status.
View Article and Find Full Text PDFThe consequences of noise exposure on the auditory system are not entirely understood. In animals, noise exposure causes selective synaptopathy-an uncoupling of auditory nerve fibers from sensory cells-mostly in fibers that respond to high sound levels. Synaptopathy can be measured physiologically in animals, but a direct relationship between noise exposure and synaptopathy in humans has yet to be proven.
View Article and Find Full Text PDFPurpose The aim of this study was to quantify the portion of variance in several measures suggested to be indicative of peripheral noise-induced cochlear synaptopathy and hidden hearing disorder that can be attributed to individual cognitive capacity. Method Regression and relative importance analysis was used to model several behavioral and physiological measures of hearing in 32 adults ranging in age from 20 to 74 years. Predictors for the model were hearing sensitivity and performance on a number of cognitive tasks.
View Article and Find Full Text PDFObjectives: Cochlear reflectance (CR) is the cochlear contribution to ear-canal reflectance. CR is a type of otoacoustic emission that is calculated as a transfer function between forward pressure and reflected pressure. The purpose of this study was to assess effects of age on CR in adults and interactions among age, sex, and hearing loss.
View Article and Find Full Text PDFObjectives: Recent animal studies have shown that noise exposure can cause cochlear synaptopathy without permanent threshold shift. Because the noise exposure preferentially damaged auditory nerve fibers that processed suprathreshold sounds (low-spontaneous rate fibers), it has been suggested that synaptopathy may underlie suprathreshold hearing deficits in humans. Recently, several researchers have suggested measures to identify the pathology or pathologies underlying suprathreshold hearing deficits in humans based on results from animal studies; however, the reliability of some of these measures have not been assessed.
View Article and Find Full Text PDFBackground: In listening environments with background noise that fluctuates in level, listeners with normal hearing can "glimpse" speech during dips in the noise, resulting in better speech recognition in fluctuating noise than in steady noise at the same overall level (referred to as masking release). Listeners with sensorineural hearing loss show less masking release. Amplification can improve masking release but not to the same extent that it does for listeners with normal hearing.
View Article and Find Full Text PDFObjectives: Cochlear reflectance (CR) is the cochlear contribution to ear-canal reflectance. CR is a type of otoacoustic emission (OAE) that is calculated as a transfer function between forward pressure and reflected pressure. The purpose of this study was to compare wideband CR to distortion-product (DP) OAEs in two ways: (1) in a clinical-screening paradigm where the task is to determine whether an ear is normal or has hearing loss and (2) in the prediction of audiometric thresholds.
View Article and Find Full Text PDFLoudness depends on both the intensity and spectrum of a sound. Listeners with normal hearing perceive a broadband sound as being louder than an equal-level narrowband sound because loudness grows nonlinearly with level and is then summed across frequency bands. This difference in loudness as a function of bandwidth is reduced in listeners with sensorineural hearing loss (SNHL).
View Article and Find Full Text PDFThe calibration of an ear probe to determine its Thévenin-equivalent acoustic source parameters facilitates the measurement of ear-canal impedance and reflectance. Existing calibration error metrics, used to evaluate the quality of a calibration, are unable to reveal undesired parallel components in the source parameters. Such parallel components can result from, e.
View Article and Find Full Text PDFObjectives: Recent animal studies suggest that noise-induced synaptopathy may underlie a phenomenon that has been labeled hidden hearing loss (HHL). Noise exposure preferentially damages low spontaneous-rate auditory nerve fibers, which are involved in the processing of moderate- to high-level sounds and are more resistant to masking by background noise. Therefore, the effect of synaptopathy may be more evident in suprathreshold measures of auditory function, especially in the presence of background noise.
View Article and Find Full Text PDFThe goal of this study was to reconcile the differences between measures of loudness obtained with continuous, unbounded scaling procedures, such as magnitude estimation and production, and those obtained using a limited number of discrete categories, such as categorical loudness scaling (CLS). The former procedures yield data with ratio properties, but some listeners find it difficult to generate numbers proportional to loudness and the numbers cannot be compared across listeners to explore individual differences. CLS, where listeners rate loudness on a verbal scale, is an easier task, but the numerical values or categorical units (CUs) assigned to the points on the scale are not proportional to loudness.
View Article and Find Full Text PDFThe level-dependent component of the latency of human auditory brainstem responses (ABR) to tonebursts decreases by about 38% for every 20-dB increase in stimulus level over a wide range of both frequency and level [Neely, Norton, Gorga, and Jesteadt (1998). J. Acoust.
View Article and Find Full Text PDFThe purpose of this study was to investigate the combined effect of multiple suppressors. Distortion-product otoacoustic emission (DPOAE) measurements were made in normal-hearing participants. Primary tones had fixed frequencies (f2 = 4000 Hz; f1 / f2 = 1.
View Article and Find Full Text PDFVariability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns.
View Article and Find Full Text PDFThis study describes procedures for constructing equal-loudness contours (ELCs) in units of phons from categorical loudness scaling (CLS) data and characterizes the impact of hearing loss on these estimates of loudness. Additionally, this study developed a metric, level-dependent loudness loss, which uses CLS data to specify the deviation from normal loudness perception at various loudness levels and as function of frequency for an individual listener with hearing loss. CLS measurements were made in 87 participants with hearing loss and 61 participants with normal hearing.
View Article and Find Full Text PDFObjective: Cochlear reflectance (CR) is the cochlear contribution to ear-canal reflectance. CR is equivalent to an otoacoustic emission (OAE) deconvolved by forward pressure in the ear canal. Similar to other OAE measures, CR level is related to cochlear status.
View Article and Find Full Text PDFObjective: Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements.
View Article and Find Full Text PDFObjectives: Distortion-product otoacoustic emissions (DPOAEs) collected after sound pressure level (SPL) calibration are susceptible to standing waves that affect measurements at the plane of the probe microphone due to overlap of incident and reflected waves. These standing-wave effects can be as large as 20 dB, and may affect frequencies both above and below 4 kHz. It has been shown that forward pressure level (FPL) calibration minimizes standing-wave effects by isolating the forward-propagating component of the stimulus.
View Article and Find Full Text PDFBecause frequency components interact nonlinearly with each other inside the cochlea, the loudness growth of tones is relatively simple in comparison to the loudness growth of complex sounds. The term suppression refers to a reduction in the response growth of one tone in the presence of a second tone. Suppression is a salient feature of normal cochlear processing and contributes to psychophysical masking.
View Article and Find Full Text PDF