Metal-organic frameworks (MOFs) are porous crystalline materials with a metal ion coordinated to a ligand molecule. Recently, MOFs are being explored extensively for energy harvesting triboelectrification. However, the majority of MOFs are brittle and hard to grow, thus leading to poor device stability and flexibility.
View Article and Find Full Text PDFTextile-based wearable humidity sensors are of great interest for human healthcare monitoring as they can provide critical human-physiology information. The demand for wearable and sustainable sensing technology has significantly promoted the development of eco-friendly sensing solutions for potential real-world applications. Herein, a biodegradable cotton (textile)-based wearable humidity sensor has been developed using fabsil-treated cotton fabric coated with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) sensing layer.
View Article and Find Full Text PDFObjectives: A tricalcium silicate-based cement, Biodentine™, has displayed antibiofilm activity when mixed with chitosan powder. This study aimed to assess the effect of chitosan incorporation on the physico-mechanical and biological properties of Biodentine™.
Methods: In this study, medium molecular weight chitosan powder was incorporated into Biodentine™ in varying proportions (2.
Deep eutectic solvents (DESs) are an emerging class of ionic liquids that offer a solution to reclaiming technology critical metals (TCMs) from electronic waste, with potential for improved life cycle analysis. The high viscosities typical of DESs, however, impose mass transport limitations such that passive TCM removal generally requires immersion over extended durations, in some cases in the order of hours. It is postulated that, through the targeted application of power ultrasound, delamination of key structures in electronic components immersed in DESs can be significantly accelerated, thereby enabling rapid recovery of TCMs.
View Article and Find Full Text PDFA high-performance textile triboelectric nanogenerator is developed based on the common commercial fabrics silk and polyester (PET). Electrospun nylon 66 nanofibers were used to boost the tribo-positive performance of silk, and a poly(vinylidene difluoride) (PVDF) coating was deployed to increase the tribo-negativity of PET. The modifications confer a very significant boost in performance: output voltage and short-circuit current density increased ∼17 times (5.
View Article and Find Full Text PDFStretchable Triboelectric Nanogenerators (TENGs) for wearable electronics are in significant demand in the area of self-powered energy harvesting and storage devices. Designing a suitable electrode is one of the major challenges in developing a fully wearable TENG device and requires research aimed at exploring new materials and methods to develop stretchable electrodes. This review article is dedicated to presenting recent developments in exploring new materials for flexible TENGs with special emphasis on electrode components for wearable devices.
View Article and Find Full Text PDFWhey protein hydrolysate (WPH) ingredients are commonly used in the manufacture of partially-hydrolysed infant formulae. The heat stability of these emulsion-based formulae is often poor, compared with those made using intact whey protein. The objective of this study was to improve the heat stability of WPH-based emulsions by conjugation of WPH with maltodextrin (MD) through wet heating.
View Article and Find Full Text PDFWhey protein isolate (WPI) solutions, with different levels of aggregated protein, were prepared by heating (5% protein, pH 7, 90°C for 30min) WPI solutions with either 20mM added NaCl (WPI+NaCl), 5mM N-ethylmaleimide (WPI+NEM) or 20mM added NaCl and 5mM NEM (WPI+NaCl+NEM). Gel electrophoresis demonstrated that the heated WPI and WPI+NaCl solutions had higher levels of aggregated protein, due to more covalent interactions between proteins, than the heated WPI+NEM and WPI+NaCl+NEM solutions. There were marked differences in the levels of amino groups between all heated WPI solutions when measured by the OPA and TNBS methods, with lower levels being measured by the TNBS method than by the OPA method.
View Article and Find Full Text PDFRennet-induced coagulation of bovine milk is a complex mechanism in which chymosin specifically hydrolyzes κ-casein, the protein responsible for the stability of the casein micelle. In equine milk, this mechanism is still unclear, and the protein targets of chymosin are unknown. To reveal the proteins involved, the rennetability of equine milk by calf chymosin was examined using gel-free and gel-based proteomic analysis and compared to bovine milk.
View Article and Find Full Text PDFAs a recipient of the Robert Wood Johnson's Pipeline, Profession, and Practice: Community-Based Dental Education grant, the Extramural Education Program (EEP) at the University of Illinois at Chicago College of Dentistry was charged with developing partnerships with community-based oral health programs throughout Illinois. These programs are to be used for clinical service-learning rotations for fourth-year dental students, relying on the utilization of the dentists employed at the community site as preceptors for the students. Because the College of Dentistry had essentially no community-based service-learning experiences prior to the Robert Wood Johnson grant, procedures and protocols needed to be developed to standardize a process for site and preceptor selection.
View Article and Find Full Text PDF