The depolymerization of the biopolymer lignin can give pure aromatic monomers but selective catalytic approaches remain scarce. Here, an approach was rerouted to deliver an unusual phenolic monomer. This monomer's instability proved challenging, but a degradation study identified strategies to overcome this.
View Article and Find Full Text PDFAs societal challenges go, the development of efficient biorefineries as a means of reducing our dependence on petroleum refineries is high on the list. One of the core strengths of the petroleum refinery is its ability to produce a huge range of different products using all of the components of the starting material. In contrast, the target of using all the biopolymers present in lignocellulosic biomass is far from realised.
View Article and Find Full Text PDFOne key challenge hindering the valorization of lignin is its structural complexity. Artificial lignin-like materials provide a stepping stone between the simplicity of model compounds and the complexity of lignin. Here, we report an optimized synthesis of an all-G β-O-4 polymer designed to model softwood lignin.
View Article and Find Full Text PDFUnderstanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods.
View Article and Find Full Text PDF