Publications by authors named "Daniel M Low"

Detecting voice disorders from voice recordings could allow for frequent, remote, and low-cost screening before costly clinical visits and a more invasive laryngoscopy examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice recordings using machine learning, to identify which acoustic variables were important for prediction to increase trust, and to determine model performance relative to clinician performance. Patients with confirmed UVFP through endoscopic examination (N = 77) and controls with normal voices matched for age and sex (N = 77) were included.

View Article and Find Full Text PDF

Purpose: Communication atypicalities are considered promising markers of a broad range of clinical conditions. However, little is known about the mechanisms and confounders underlying them. Medications might have a crucial, relatively unknown role both as potential confounders and offering an insight on the mechanisms at work.

View Article and Find Full Text PDF

In the face of the global pandemic caused by the disease COVID-19, researchers have increasingly turned to simple measures to detect and monitor the presence of the disease in individuals at home. We sought to determine if measures of neuromotor coordination, derived from acoustic time series, as well as phoneme-based and standard acoustic features extracted from recordings of simple speech tasks could aid in detecting the presence of COVID-19. We further hypothesized that these features would aid in characterizing the effect of COVID-19 on speech production systems.

View Article and Find Full Text PDF

When reading a sentence, individual words can be combined to create more complex meaning. In this study, we sought to uncover brain regions that reflect the representation of the meaning of sentences at the topic level, as opposed to the meaning of their individual constituent words when considered irrespective of their context. Using fMRI, we recorded the neural activity of participants while reading sentences.

View Article and Find Full Text PDF

Introduction: Detecting voice disorders from voice recordings could allow for frequent, remote, and low-cost screening before costly clinical visits and a more invasive laryngoscopy examination. Our goals were to detect unilateral vocal fold paralysis (UVFP) from voice recordings using machine learning, to identify which acoustic variables were important for prediction to increase trust, and to determine model performance relative to clinician performance.

Methods: Patients with confirmed UVFP through endoscopic examination (N=77) and controls with normal voices matched for age and sex (N=77) were included.

View Article and Find Full Text PDF

Objective: There are many barriers to accessing mental health assessments including cost and stigma. Even when individuals receive professional care, assessments are intermittent and may be limited partly due to the episodic nature of psychiatric symptoms. Therefore, machine-learning technology using speech samples obtained in the clinic or remotely could one day be a biomarker to improve diagnosis and treatment.

View Article and Find Full Text PDF

Objective: Discourse skills - in which the right hemisphere has an important role - enables verbal communication by selecting contextually relevant information and integrating it coherently to infer the correct meaning. However, language research in epilepsy has focused on single word analysis related mainly to left hemisphere processing. The purpose of this study was to investigate discourse abilities in patients with right lateralized medial temporal lobe epilepsy (RTLE) by comparing their performance to that of patients with left temporal lobe epilepsy (LTLE).

View Article and Find Full Text PDF