When wine grapes are exposed to smoke, there is a risk that the resulting wines may possess smoky, ashy, or burnt aromas, a wine flaw known as smoke taint. Smoke taint occurs when the volatile phenols (VPs) largely responsible for the aroma of smoke are transformed in grape into a range of glycosides that are imperceptible by smell. The majority of VP-glycosides described to date are disaccharides possessing a reducing β-d-glucopyranosyl moiety.
View Article and Find Full Text PDFSaccharomyces cerevisiae is the primary yeast species responsible for most fermentations in winemaking. However, other yeasts, including Saccharomyces uvarum, have occasionally been found conducting commercial fermentations around the world. S.
View Article and Find Full Text PDFRhizopogon vesiculosus and R. vinicolor are sister fungal species; they form ectomycorrhizas exclusively with Douglas-fir roots, and they are important in forming relatively large mycorrhizal networks, but they may be vulnerable to disturbance caused by logging practices. The main objective was to determine the resilience of mycorrhizal networks 25 years following removal of large hub trees.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFFEMS Yeast Res
August 2019
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques.
View Article and Find Full Text PDFModern day winemaking often involves the addition of sulfur dioxide (SO) at crush to act as both an antioxidant and an antimicrobial agent. While the effects of SO on microbial communities and particularly on spoilage microorganisms has been well-studied, the advent of culture-independent molecular technologies, such as Illumina sequencing, allows the subject to be re-visited in a new context. High-throughput amplicon sequencing allows for a more thorough evaluation of microbial communities, as thousands of microbial sequences per sample can be identified and even rare microorganisms can be studied.
View Article and Find Full Text PDFTypically, Mycena species are viewed as saprotrophic fungi. However, numerous detections of Mycena spp. in the roots of green plants suggest that a continuum from saprotrophy to biotrophy could exist.
View Article and Find Full Text PDFDuring winemaking, sulfur dioxide (SO) is often added prior to the onset of alcoholic fermentation to prevent the growth of spoilage microorganisms and to create an environment that promotes the rapid colonization of the grape must by Saccharomyces cerevisiae. Most recent research has focused on the impacts of SO additions on spoilage microorganisms or on the yeast community at a species level, but less is known about the impacts that SO additions have on S. cerevisiae populations.
View Article and Find Full Text PDFCulture-independent methods of microbial identification have been developed, which allow for DNA extraction directly from environmental samples without subjecting microbes to growth on nutrient media. These methods often involve next generation DNA sequencing (NGS) for identifying microbes and qPCR for quantifying them. Despite the benefits of extracting all DNA from the sample, results may be compromised by amplifying DNA from dead cells.
View Article and Find Full Text PDFSoil depth partitioning is thought to promote the diversity of ectomycorrhizal (EM) fungal communities, but little is known about whether it is controlled by abiotic or biotic factors. In three bioassay experiments, we tested the role of vertical soil heterogeneity in determining the distributions and competitive outcomes of the EM sister species Rhizopogon vinicolor and Rhizopogon vesiculosus. We planted Pseudotsuga menziesii seedlings into soils that were either a homogenized mix of upper and lower depths or vertically stratified combinations mimicking natural field conditions.
View Article and Find Full Text PDFRhizopogon vesiculosus and Rhizopogon vinicolor are sister species of ectomycorrhizal fungi that associate exclusively with Douglas-fir (DF). They form tuberculate mycorrhizas and they can be easily distinguished using molecular tools. We are not aware of studies relating their relative abundance in forests with different age classes.
View Article and Find Full Text PDFSaccharomyces cerevisiae strains vary in their ability to develop and enhance sensory attributes of alcoholic beverages and are often found growing in mixed strain fermentations; however, quantifying individual strains is challenging due to quantification inaccuracies, low marker longevity, and compromised kinetics. We developed a fluorescent probe, consisting of glutathione molecules conjugated to a quantum dot (QD). Two S.
View Article and Find Full Text PDFInoculated fermentations are practiced in most wine regions of the world. This type of fermentation involves adding a commercial Saccharomyces cerevisiae strain as an inoculant. It is often assumed that the inoculant maintains dominance throughout the fermentation; however, sometimes commercial or indigenous yeasts, which were not intentionally added, end up as the dominant yeast in the winery fermentation.
View Article and Find Full Text PDFUnderstanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas-fir (Pseudotsuga menziesii var.
View Article and Find Full Text PDFMycorrhizal networks (MNs) are fungal hyphae that connect roots of at least two plants. It has been suggested that these networks are ecologically relevant because they may facilitate interplant resource transfer and improve regeneration dynamics. This study investigated the effects of MNs on seedling survival, growth and physiological responses, interplant resource (carbon and nitrogen) transfer, and ectomycorrhizal (EM) fungal colonization of seedlings by trees in dry interior Douglas-fir (Pseudotsuga menziesii var.
View Article and Find Full Text PDF*The role of mycorrhizal networks in forest dynamics is poorly understood because of the elusiveness of their spatial structure. We mapped the belowground distribution of the fungi Rhizopogon vesiculosus and Rhizopogon vinicolor and interior Douglas-fir trees (Pseudotsuga menziesii var. glauca) to determine the architecture of a mycorrhizal network in a multi-aged old-growth forest.
View Article and Find Full Text PDFMany factors associated with forests are collectively responsible for controlling ectomycorrhizal (ECM) fungal community structure, including plant species composition, forest structure, stand age, and soil nutrients. The objective of this study was to examine relationships among ECM fungal community measures, local soil nutrients, and stand age along a chronosequence of mixed forest stands that were similar in vegetation composition and site quality. Six combinations of age class (5-, 26-, 65-, and 100-year-old) and stand initiation type (wildfire and clearcut) were replicated on four sites, each representing critical seral stages of stand development in Interior Cedar-Hemlock (ICH) forests of southern British Columbia.
View Article and Find Full Text PDFEctomycorrhizal (ECM) fungal communities of Douglas-fir (Pseudotsuga menziesii) and paper birch (Betula papyrifera) were studied along a chronosequence of forest development after stand-replacing disturbance. Previous studies of ECM succession did not use molecular techniques for fungal identification or lacked replication, and none examined different host species. Four age classes of mixed forests were sampled: 5-, 26-, 65-, and 100-yr-old, including wildfire-origin stands from all four classes and stands of clearcut origin from the youngest two classes.
View Article and Find Full Text PDFWe conducted greenhouse experiments using Douglas-fir (Pseudotsuga menziesii var. glauca) seedlings where chemical methods (fungicides) were used to prevent ectomycorrhizal colonization of single seedlings or physical methods (mesh barriers) were used to prevent formation of mycorrhizal connections between neighboring seedlings. These methods were chosen for their ease of application in the field.
View Article and Find Full Text PDFThe effects on the ectomycorrhizal fungal community of clearcut logging, which is used to harvest millions of hectares of ectomycorrhizal forest annually, has been studied for a number of years. Here, we review current knowledge of inoculum sources for ectomycorrhizal fungi in forests and then re-examine earlier studies of ectomycorrhizas on young trees in regenerating stands. We conclude that, taken separately from the effects of site preparation, the major impact of clearcut logging is to change the species composition of the ectomycorrhizal fungal community rather than to reduce the percentage of roots colonized.
View Article and Find Full Text PDFInterspecific C transfer was studied in laboratory microcosms containing pairs of 6-month-old Betula papyrifera Marsh, and Pseudotsuga menziesii (Mirb.) Franca seedlings growing in individual, root-restrictive (28μm pore size) pouches filled with field soil. Interspecific transfer was examined by reciprocal labelling of seedlings with CO and CO .
View Article and Find Full Text PDF