The functioning of supercapacitors relies on establishing electrostatic double-layer capacitance across a larger surface area, offering numerous advantages over conventional batteries, such as an extended lifespan and elevated safety standards. The differential capacitance is a fundamental property within the electrical double layer, playing a pivotal role in the advancement of electrical double-layer supercapacitors. In addition to electrostatic interactions, multiple theoretical and experimental studies have indicated that the differential capacitance is influenced by factors such as the physical structure of the electrode, solvent-mediated hydration interactions, and the specific type of electrolyte utilized.
View Article and Find Full Text PDFThe importance of charge-charge interactions in the thermal stability of proteins is widely known. pH and ionic strength play a crucial role in these electrostatic interactions, as well as in the arrangement of ionizable residues in each protein-folding stage. In this study, two coarse-grained models were used to evaluate the effect of pH and salt concentration on the thermal stability of a protein G variant (1PGB-QDD), which was chosen due to the quantity of experimental data exploring these effects on its stability.
View Article and Find Full Text PDFIn this work we investigate the adsorption of polyelectrolyte chains onto uniformly charged cylindrical macroions by means of the Metropolis Monte Carlo simulations and weighted histogram analysis method. Adopting a simplified model for macromolecules and treating the electrolytic solution in the Debye-Hückel level, conformational properties of the adsorbed chain, such as the radius of gyration and the thickness of the adsorbed layer, are provided as a function of ionic strength and macroion charge density. By analysis of the free energy profile as a function of the radius of gyration it was possible to identify first-order-like transitions between adsorbed and desorbed states and obtain a macroion charge density dependence of the critical ionic strength in good agreement with experiments.
View Article and Find Full Text PDF