Publications by authors named "Daniel Lorrain"

Multiple sclerosis (MS) is a chronic and debilitating neurological disease that results in inflammatory demyelination. While endogenous remyelination helps to recover function, this restorative process tends to become less efficient over time. Currently, intense efforts aimed at the mechanisms that promote remyelination are being considered promising therapeutic approaches.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC = 1.1 nM, 91% ), did not elicit a β-arrestin-2 recruitment functional response ( < 10%).

View Article and Find Full Text PDF

Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease-and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the CNS are lacking.

View Article and Find Full Text PDF

The discovery of PIPE-359, a brain-penetrant and selective antagonist of the muscarinic acetylcholine receptor subtype 1 is described. Starting from a literature-reported M antagonist, linker replacement and structure-activity relationship investigations of the eastern 1-(pyridinyl)piperazine led to the identification of a novel, potent, and selective antagonist with good MDCKII-MDR1 permeability. Continued semi-iterative positional scanning facilitated improvements in the metabolic and hERG profiles, which ultimately delivered PIPE-359.

View Article and Find Full Text PDF

A significant unmet need for patients with multiple sclerosis (MS) is the lack of U.S. Food and Drug Administration (FDA)-approved remyelinating therapies.

View Article and Find Full Text PDF

We previously published on the design and synthesis of novel, potent and selective PPARα antagonists suitable for either i.p. or oral in vivo administration for the potential treatment of cancer.

View Article and Find Full Text PDF

Peroxisome-proliferator activated receptors (PPAR) are members of the nuclear hormone receptor superfamily which regulate gene transcription. PPARα is a key regulator of lipid homeostasis and a negative regulator of inflammation. Under conditions of metabolic stress such as fasting or glucose deprivation, PPARα is upregulated in order to control gene expression necessary for processing alternate fuel sources (e.

View Article and Find Full Text PDF

Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination.

View Article and Find Full Text PDF

Unlabelled: Remyelinating therapies seek to promote restoration of function and normal cellular architecture following demyelination in diseases, such as multiple sclerosis (MS). Functional screening for small molecules or novel targets for remyelination is a major hurdle to the identification and development of rational therapeutics for MS. Recent findings and technical advances provide us with a unique opportunity to provide insight into the cell autonomous mechanisms for remyelination and address this unmet need.

View Article and Find Full Text PDF

Tumor-specific metabolic changes can reveal new therapeutic targets. Our findings implicate a supporting role for fatty acid metabolism in chronic lymphocytic leukemia (CLL) cell survival. Peroxisome proliferator-activated receptor (PPAR)-α, a major transcriptional regulator of fatty acid oxidation, was recently shown to be upregulated in CLL.

View Article and Find Full Text PDF

The discovery and SAR of a novel series of potent and selective PPARα antagonists are herein described. Exploration of replacements for the labile acyl sulfonamide linker led to a biaryl sulfonamide series of which compound 33 proved to be suitable for further profiling in vivo. Compound 33 demonstrated excellent potency, selectivity against other nuclear hormone receptors, and good pharmacokinetics in mouse.

View Article and Find Full Text PDF

Background: Allergic conjunctivitis is characterized by itchy, watery and swollen eyes which occur in response to exposure to seasonal or environmental allergens. The early phase reaction of allergic conjunctivitis is primarily mediated by mast cell degranulation while the late phase reaction is driven by Th2 cells and eosinophils. Prostaglandin D(2) (PGD(2)), released from mast cells, is present in allergic conjunctival tears and may elicit classical allergic responses via interaction with the high-affinity DP2 receptor (chemoattractant receptor-homologous molecule expressed on Th2 cells, CRTh2).

View Article and Find Full Text PDF

Biphenylacetic acid (5) was identified through a library screen as an inhibitor of the prostaglandin D(2) receptor DP2 (CRTH2). Optimization for potency and pharmacokinetic properties led to a series of selective CRTH2 antagonists. Compounds demonstrated potency in a human DP2 binding assay and a human whole blood eosinophil shape change assay, as well as good oral bioavailability in rat and dog, and efficacy in a mouse model of allergic rhinitis following oral dosing.

View Article and Find Full Text PDF

Ibudilast, an asthma drug, has demonstrated antinociceptive effects in several rat models of peripheral neuropathic pain, and a proposed mechanism of action is the inhibition of release of the cytokine tumor necrosis factor-α (TNF-α) from activated spinal microglia. Spinal glial activation has also been demonstrated in rat models of central neuropathic pain following spinal cord injury (SCI). The current study evaluated the effect of a short course of treatment with ibudilast on SCI-induced pain, and for comparison, following a chronic constriction injury (CCI; the Bennett model) of the sciatic nerve in rats.

View Article and Find Full Text PDF

The prostaglandin D(2) (PGD(2)) receptor type 2 (DP2) is a G protein-coupled receptor that has been shown to be involved in a variety of allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis. In this study, we describe the preclinical pharmacological and pharmacokinetic properties of the small-molecule DP2 antagonist [2'-(3-benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (AM211). We determine that AM211 has high affinity for human, mouse, rat, and guinea pig DP2 and it shows selectivity over other prostanoid receptors and enzymes.

View Article and Find Full Text PDF

Previous exposure to amphetamine leads to enhanced locomotor and nucleus accumbens (NAcc) dopamine (DA) responding to the drug as well as enhanced amphetamine self-administration. Here, we investigated the effects of exposure to Δ(9)-tetrahydrocannibinol (Δ(9)-THC) on behavioral and biochemical responding to amphetamine. Rats in different groups received five exposure injections of vehicle or one of five doses of Δ(9)-THC (0.

View Article and Find Full Text PDF

Objective: Scleroderma (systemic sclerosis [SSc]), is characterized by progressive multiorgan fibrosis. We recently implicated lysophosphatidic acid (LPA) in the pathogenesis of pulmonary fibrosis. The purpose of the present study was to investigate the roles of LPA and two of its receptors, LPA₁ and LPA₂, in dermal fibrosis in a mouse model of SSc.

View Article and Find Full Text PDF

Compound 21 (AM432) was identified as a potent and selective antagonist of the DP(2) receptor (CRTH2). Modification of a bi-aryl core identified a series of tri-aryl antagonists of which compound 21 proved a viable clinical candidate. AM432 shows excellent potency in a human whole blood eosinophil shape change assay with prolonged incubation, a comparatively long off-rate from the DP(2) receptor, excellent pharmacokinetics in dog and in vivo activity in two mouse models of inflammatory disease after oral dosing.

View Article and Find Full Text PDF

We assessed the effects of subtype-selective ER agonists on monoamine levels in discrete regions of the female rat brain. Ovariectomized (ovx) rats were treated for 4 days with vehicle, 17β-estradiol (E; 0.05mg/kg), an ERβ agonist (C19; 3mg/kg) or an ERα agonist (PPT; 3mg/kg) and samples from brain regions were assessed for monoamines and metabolites.

View Article and Find Full Text PDF

AM643 (compound 6, 3-{3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid) was identified as a potential candidate for formulation as a topical agent for the treatment of skin disorders involving leukotriene production. Dermal application of 6 using a prototypical vehicle in a murine ear arachidonic acid model showed significant reduction in the concentrations of leukotrienes in mouse skin with concomitant reduction in ear swelling.

View Article and Find Full Text PDF

We evaluated the in vivo pharmacological properties of AM803 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, a selective five-lipoxygenase-activating protein (FLAP) inhibitor, using rat and mouse models of acute inflammation. Oral administration of AM803 (1 mg/kg) resulted in sustained inhibition of ex vivo ionophore-challenged whole blood LTB4 biosynthesis with >90% inhibition for up to 12 h and an EC50 of approximately 7 nM. When rat lungs were challenged in vivo with calcium-ionophore, AM803 inhibited LTB4 and cysteinyl leukotriene (CysLT) production with ED50s of 0.

View Article and Find Full Text PDF

Prostaglandin D(2) (PGD(2)) is derived from arachidonic acid and binds with high affinity to the G protein coupled receptors prostanoid DP(1) and DP(2). Interaction with DP(2) results in cell chemotaxis, eosinophil degranulation, eosinophil shape change, adhesion molecule upregulation and Th2 cytokine production. In allergic rhinitis and allergic asthma PGD(2) is released from mast cells in response to allergen challenge and may trigger symptoms such as sneezing, rhinorrhea, pruritus, mucus hypersecretion and pulmonary inflammation.

View Article and Find Full Text PDF

Prostaglandin D(2) (PGD(2)) is one of a family of biologically active lipids derived from arachidonic acid via the action of COX-1 and COX-2. PGD(2) is released from mast cells and binds primarily to two G protein-coupled receptors, namely DP1 and DP2, the latter also known as chemoattractant receptor-homologous molecule expressed on Th2 cells. DP2 is predominantly expressed on eosinophils, Th2 cells, and basophils, but it is also expressed to a lesser extent on monocytes, mast cells, and epithelial cells.

View Article and Find Full Text PDF

A series of potent 5-lipoxygenase-activating protein (FLAP) inhibitors are herein described. SAR studies focused on the discovery of novel alicyclic moieties appended to an indole core to optimize potency, physical properties and off-target activities. Subsequent SAR on the N-benzyl substituent of the indole led to the discovery of compound 39 (AM679) which showed potent inhibition of leukotrienes in human blood and in a rodent bronchoalvelolar lavage (BAL) challenge model.

View Article and Find Full Text PDF