Publications by authors named "Daniel Lopez-Martinez"

Objectives: Few machine learning (ML) models are successfully deployed in clinical practice. One of the common pitfalls across the field is inappropriate problem formulation: designing ML to fit the data rather than to address a real-world clinical pain point.

Methods: We introduce a practical toolkit for user-centred design consisting of four questions covering: (1) solvable pain points, (2) the unique value of ML (eg, automation and augmentation), (3) the actionability pathway and (4) the model's reward function.

View Article and Find Full Text PDF

Opioids are the preferred medications for the treatment of pain in the intensive care unit. While under-treatment leads to unrelieved pain and poor clinical outcomes, excessive use of opioids puts patients at risk of experiencing multiple adverse effects. In this work, we present a sequential decision making framework for opioid dosing based on deep reinforcement learning.

View Article and Find Full Text PDF

Pain is usually measured by patient's self-report, which requires patient collaboration. Hence, the development of an objective automatic pain detection method would be useful in many clinical applications and patient populations. Previous studies have explored the feasibility of using physiological autonomic signals to detect the presence of pain.

View Article and Find Full Text PDF

Unobtrusive and accurate ambulatory methods are needed to monitor long-term sleep patterns for improving health. Previously developed ambulatory sleep detection methods rely either in whole or in part on self-reported diary data as ground truth, which is a problem, since people often do not fill them out accurately. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep onset/offset using a type of recurrent neural network with long-short-term memory (LSTM) cells for synthesizing temporal information.

View Article and Find Full Text PDF

Inadequate sleep affects health in multiple ways. Unobtrusive ambulatory methods to monitor long-term sleep patterns in large populations could be useful for health and policy decisions. This paper presents an algorithm that uses multimodal data from smartphones and wearable technologies to detect sleep/wake state and sleep episode on/offset.

View Article and Find Full Text PDF