MYC is a transcription factor frequently overexpressed in cancer. To determine how MYC drives the neoplastic phenotype, we performed transcriptomic analysis using a panel of MYC-driven autochthonous transgenic mouse models. We found that MYC elicited gene expression changes mostly in a tissue- and lineage-specific manner across B-cell lymphoma, T-cell acute lymphoblastic lymphoma, hepatocellular carcinoma, renal cell carcinoma, and lung adenocarcinoma.
View Article and Find Full Text PDFBackground: Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and a member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of proteins. The AhR was cloned and characterized for its role in mediating the toxicity of dioxins. Subsequent research has identified the role of AhR in suppression of cancer cell growth.
View Article and Find Full Text PDFThe MYC oncogene drives T- and B- lymphoid malignancies, including Burkitt's lymphoma (BL) and Acute Lymphoblastic Leukemia (ALL). Here, we demonstrate a systemic reduction in natural killer (NK) cell numbers in SRα-tTA/Tet-O-MYC mice bearing MYC-driven T-lymphomas. Residual mNK cells in spleens of MYC T-lymphoma-bearing mice exhibit perturbations in the terminal NK effector differentiation pathway.
View Article and Find Full Text PDFFront Cell Dev Biol
April 2020
PIN1 is a phosphorylation-directed member of the peptidyl-prolyl / isomerase (PPIase) family that facilitates conformational changes in phosphorylated targets such as c-MYC (MYC). Following signaling events that mediate phosphorylation of MYC at Serine 62, PIN1 establishes structurally distinct pools of MYC through its and isomerization activity at Proline 63. Through these isomerization steps, PIN1 functionally regulates MYC's stability, the molecular timing of its DNA binding and transcriptional activity, and its subnuclear localization.
View Article and Find Full Text PDFAberrant DNA methylation is a hallmark of cancer. However, our understanding of how tumor cell-specific DNA methylation patterns are established and maintained is limited. Here, we report that in T-cell acute lymphoblastic leukemia (T-ALL) and Burkitt's lymphoma the oncogene causes overexpression of DNA methyltransferase (DNMT) 1 and 3B, which contributes to tumor maintenance.
View Article and Find Full Text PDF