Diabetes Metab Res Rev
January 2016
During the last decades, the central nervous system (CNS) was intensively tested as a site for islet transplantation in different animal models of diabetes. Immunoprivilege properties of intracranial and intrathecal sites were found to delay and reduce rejection of transplanted allo-islets and xeno-islets, especially in the form of dispersed single cells. Insulin released from islets grafted in CNS was shown to cross the blood-brain barrier and to act as a regulator of peripheral glucose metabolism.
View Article and Find Full Text PDFDiabetes Metab Res Rev
September 2012
Hypoxia is believed to be a crucial factor involved in cell adaptation to environmental stress. Islet transplantation, especially with immunoisolated islets, interrupts vascular connections, resulting in the substantially decreased delivery of oxygen and nutrients to islet cells. Insulin-producing pancreatic beta cells are known to be highly susceptible to oxygen deficiency.
View Article and Find Full Text PDFHistochem Cell Biol
June 2012
Insulin-producing beta cells are known to be highly susceptible to hypoxia, which is a major factor in their destruction after pancreatic islet transplantation. However, whether the glucagon-producing pancreatic islet alpha cells are sensitive to hypoxia is not known. Our objective was to compare the sensitivity of alpha and beta cells to hypoxia.
View Article and Find Full Text PDFInsulin-producing pancreatic beta cells are known to be extremely susceptible to the oxidative stress and hypoxia generated following islet transplantation in diabetic patients. We hereby present a novel in vivo selection strategy based on the isolation of insulin-producing cells with enhanced protection after repeated rounds of encapsulation and xenotransplantation. Rat insulinoma INS-1 cells were encapsulated in alginate macrobeads and transplanted in the peritoneal cavity of mice.
View Article and Find Full Text PDF