Objectives: Compromised hepatic fatty acid oxidation (FAO) has been observed in human MASH patients and animal models of MASLD/MASH. It remains poorly understood how and when the hepatic FAO pathway is suppressed during the progression of MASLD towards MASH. Hepatic ChREBP⍺ is a classical lipogenic transcription factor that responds to the intake of dietary sugars.
View Article and Find Full Text PDFAdipocytes contribute to metabolic disorders such as obesity, diabetes, and atherosclerosis. Prior characterizations of the transcriptional network driving adipogenesis have overlooked transiently acting transcription factors (TFs), genes, and regulatory elements that are essential for proper differentiation. Moreover, traditional gene regulatory networks provide neither mechanistic details about individual regulatory element-gene relationships nor temporal information needed to define a regulatory hierarchy that prioritizes key regulatory factors.
View Article and Find Full Text PDFDysregulated lipid droplet accumulation has been identified as one of the main contributors to liver steatosis during nonalcoholic fatty liver disease (NAFLD). However, the underlying molecular mechanisms for excessive lipid droplet formation in the liver remain largely unknown. In the current study, hepatic E4 promoter-binding protein 4 (E4BP4) plays a critical role in promoting lipid droplet formation and liver steatosis in a high-fat diet (HFD)-induced NAFLD mouse model.
View Article and Find Full Text PDFObjective: Adipose tissue is a critical regulator of energy balance that must rapidly shift its metabolism between fasting and feeding to maintain homeostasis. Adenosine has been characterized as an important regulator of adipocyte metabolism primarily through its actions on A adenosine receptors (A1R). We sought to understand the role A1R plays specifically in adipocytes during fasting and feeding to regulate glucose and lipid metabolism.
View Article and Find Full Text PDFAcetaminophen (N-acetyl-para-aminophenol [APAP]) overdose is the most common cause of drug-induced liver injury in the Western world and has limited therapeutic options. As an important dietary component intake, fructose is mainly metabolized in liver, but its impact on APAP-induced liver injury is not well established. We aimed to examine whether fructose supplementation could protect against APAP-induced hepatotoxicity and to determine potential fructose-sensitive intracellular mediators.
View Article and Find Full Text PDF