Severe left ventricular failure can progress to right ventricular failure, necessitating alternatives to heart transplantation, such as total artificial heart (TAH) treatment. Conventional TAHs encounter challenges associated with miniaturization and hemocompatibility owing to their reliance on mechanical valves and bearings. A magnetically levitated TAH (IB-Heart) was developed, utilizing a magnetic bearing.
View Article and Find Full Text PDFWith the incidence of end-stage heart failure steadily increasing, the need for a practical total artificial heart (TAH) has never been greater. Continuous flow TAHs (CFTAH) are being developed using rotary blood pumps (RBPs), leveraging their small size, mechanical simplicity, and excellent durability. To completely replace the heart with currently available RBPs, two are required; one for providing pulmonary flow and one for providing systemic flow.
View Article and Find Full Text PDFPurpose: A minimally invasive, partial-assist, intra-atrial blood pump has been proposed, which would unload the left ventricle with a flow path from the left atrium to the arterial system. Flow modulation is a common strategy for ensuring washout in the pump, but it can increase power consumption because it is typically achieved through motor-speed variation. However, if a pump's performance curve had the proper gradient, flow modulation could be realized passively.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
The IntraVAD is an intra-aortic left ventricular assist device (LVAD) to be located in the ascending aorta. In order to enhance unloading and promote coronary flow for the left ventricle (LV), an operating mechanism, reverse-rotation control (RRc) mode, has been developed for the IntraVAD and tested in vitro in a mock circulation loop (MCL). The RRc mode consists of forward rotation (FR) and reverse rotation (RR).
View Article and Find Full Text PDFUnlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis.
View Article and Find Full Text PDFThe intra-aortic ventricular assist device (IntraVAD) is a miniature intra-aortic axial-flow ventricular assist device (VAD) that works in series with the left ventricle (LV) to assist the compromised heart. Previous in vitro results have shown that the IntraVAD can successfully increase coronary perfusion and offload ventricular volume by operating in reverse-rotation control (RRc) mode. The RRc mode includes forward rotation in systole and reverse rotation (RR) in diastole.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2016
Cardiac recovery has been observed in end-stage heart failure patients with mechanical circulatory support. An intra-aortic ventricular assist device (IntraVAD) is a novel rotary blood pump designed to operate in the ascending aorta behind the aortic valve, working in series with the compromised left ventricle (LV). Such a device requires optimal motion control in order to enhance the myocardial perfusion and thus promote cardiac recovery.
View Article and Find Full Text PDFA practical artificial heart has been sought for >50 years. An increasing number of people succumb to heart disease each year, but the number of hearts available for transplantation remains small. Early total artificial hearts mimicked the pumping action of the native heart.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
A mock circulatory loop was constructed to facilitate total artificial heart development. The loop includes many novel features such as a pressure-regulated tank to simulate exercise conditions, controllable systemic and pulmonary vascular resistance to create left-right flow imbalances as seen in postural change and breathing, and a left atrial suction valve. Dual HeartMate II pumps and the BiVACOR® rotary total artificial heart were used to generate pressure and flow data characterizing the flow loop.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
Although there is limited consensus about the strict requirement to deliver pulsatile perfusion to the human circulatory system, speed modulation of rotary blood pumps is an approach that may capture the benefits of both positive displacement and continuous flow blood pumps. In the current stage of development of the BiVACOR Total Artificial Heart emphasis is placed on providing pulsatile outflow from the pump. Multiple pulsatile speed profiles have been applied in preliminary in-vivo operation in order to assess the capability of the TAH to recreate a physiologic pulse.
View Article and Find Full Text PDFThe present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures.
View Article and Find Full Text PDFRotary blood pumps are emerging as a viable technology for total artificial hearts, and the development of physiological control algorithms is accelerated with new evaluation environments. In this article, we present a novel hybrid mock circulation loop (HMCL) designed specifically for evaluation of rotary total artificial hearts (rTAH). The rTAH is operated in the physical domain while all vasculature elements are embedded in the numerical domain, thus combining the strengths of both approaches: fast and easy exchange of the vasculature model together with improved controllability of the pump.
View Article and Find Full Text PDFThe accurate representation of rotary blood pumps in a numerical environment is important for meaningful investigation of pump-cardiovascular system interactions. Although numerous models for ventricular assist devices (VADs) have been developed, modeling methods for rotary total artificial hearts (rTAHs) are still required. Therefore, an rTAH prototype was characterized in a steady flow, hydraulic test bench over a wide operational range for pump and hydraulic parameters.
View Article and Find Full Text PDFFrom the moment of creation to the moment of death, the heart works tirelessly to circulate blood, being a critical organ to sustain life. As a non-stopping pumping machine, it operates continuously to pump blood through our bodies to supply all cells with oxygen and necessary nutrients. When the heart fails, the supplement of blood to the body's organs to meet metabolic demands will deteriorate.
View Article and Find Full Text PDFLong-term rotary left ventricular assist devices (LVADs) are increasingly employed to bridge patients with end-stage heart failure to transplant or as a destination therapy. Significant recent device development has increased patient support times, shifting further development focus toward physiologically sensitive control of the pump operation. Sensorless control of these devices would benefit from increased observability of the ventricular volume/preload to the pump, in order to regulate flow based on preload, imitating the native Frank-Starling flow control.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2012
Comprehensive testing and evaluation of cardiovascular device function and performance is required prior to clinical implementation. Initial proof of concept investigations are conducted within in-vitro mock circulation loops, before proof of principle is demonstrated via in-vivo animal testing. To facilitate the rapid transition of cardiovascular devices through this development period, a testing apparatus was developed that closely models the natural human cardiovascular system haemodynamics.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
A physiological control system was developed for a rotary left ventricular assist device (LVAD) in which the target pump flow rate (LVADQ) was set as a function of left atrial pressure (LAP), mimicking the Frank-Starling mechanism. The control strategy was implemented using linear PID control and was evaluated in a pulsatile mock circulation loop using a prototyped centrifugal pump by varying pulmonary vascular resistance to alter venous return. The control strategy automatically varied pump speed (2460 to 1740 to 2700 RPM) in response to a decrease and subsequent increase in venous return.
View Article and Find Full Text PDFBackground And Aim Of The Study: During the development of a mechanical heart valve prosthesis, many studies are conducted to guarantee its correct function. Currently, investigations into the thrombogenic potential of a valve after its replacement are conducted with expensive and time-consuming chronic animal trials. Hence, the study aim was to develop and test an alternative system to resolve such thrombogenic issues.
View Article and Find Full Text PDFThe use of rotary left ventricular assist devices (LVADs) has extended to destination and recovery therapy for end-stage heart failure. Incidence of right ventricular failure while on LVAD support requires a second device be implanted to support the failing right ventricle. Without a commercially available implantable rotary right ventricular assist device, rotary LVADs are cannulated into the right heart and operation modified to provide suitable support for the pulmonary system.
View Article and Find Full Text PDFIn many state-of-the-art rotary blood pumps for long-term ventricular assistance, the impeller is suspended within the casing by magnetic or hydrodynamic means. For the design of such suspension systems, profound knowledge of the acting forces on the impeller is crucial. Hydrodynamic bearings running at low clearance gaps can yield increased blood damage and magnetic bearings counteracting high forces consume excessive power.
View Article and Find Full Text PDFWe propose a deadbeat controller for the control of pulsatile pump flow (Q(p) ) in an implantable rotary blood pump (IRBP). Noninvasive measurements of pump speed and current are used as inputs to a dynamical model of Q(p) estimation, previously developed and verified in our laboratory. The controller was tested using a lumped parameter model of the cardiovascular system (CVS), in combination with the stable dynamical models of Q(p) and differential pressure (head) estimation for the IRBP.
View Article and Find Full Text PDFIn vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing. A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device's ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 × 600 × 600 mm (L × W × H) was constructed in conjunction with a computer mathematical simulation.
View Article and Find Full Text PDFRecent studies into rotary biventricular support have indicated that inadequate left/right flow balancing may lead to vascular congestion and/or ventricular suckdown. The implementation of a passive controller that automatically adjusts left/right flow during total and partial cardiac support would improve physiological interaction. This has encouraged the development of a biventricular assist device (BiVAD) prototype that achieves passive control of the two rotary pumps' hydraulic output by way of a nonrotating double pressure plate configuration, the hub, suspended between the ventricular assist device (VAD) impellers.
View Article and Find Full Text PDFClinical studies have reported the balancing of pump outputs to be a serious control issue for rotary biventricular support (BiVS) systems. Poor reliability of long-term, blood immersed pressure sensors encouraged the development of a new control strategy to improve their viability. A rotary BiVS device was designed and constructed with a mechanical passive controller to autoregulate pump outputs to emulate the native baroreceptor response.
View Article and Find Full Text PDFOxygen deficiency in the right brain is a common problem during cardiopulmonary bypass (CPB). This is linked to an insufficient perfusion of the carotid and vertebral artery. The flow to these vessels is strongly influenced by the outflow cannula position, which is traditionally located in the ascending aorta.
View Article and Find Full Text PDF