An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFInfections caused by Mycobacterium abscessus are increasing in prevalence in cystic fibrosis patients. This opportunistic pathogen's intrinsic resistance to most antibiotics has perpetuated an urgent demand for new, more effective therapeutic interventions. Here we report a prospective advance in the treatment of M.
View Article and Find Full Text PDFJ Mol Graph Model
January 2018
The major function of the enzyme human tissue transglutaminase (TG2) is the crosslinking of proteins via a transamidation between the γ-carboxamide of a glutamine and the ε-amino group of a lysine. Overexpression of TG2 can lead to undesirable outcomes and has been linked to conditions such as fibrosis, celiac disease and neurodegenerative diseases. Accordingly, TG2 is a tempting drug target.
View Article and Find Full Text PDFTissue transglutaminase (TG2) is a multifunctional Ca(2+)-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme.
View Article and Find Full Text PDFDipeptide-based sulfonium peptidylmethylketones derived from 6-diazo-5-oxo-L-norleucine (DON) have been investigated as potential water-soluble inhibitors of extracellular transglutaminase. The lead compounds were prepared in four steps and exhibited potent activity against tissue transglutaminase.
View Article and Find Full Text PDFA set of closely related furylidene thiosemicarbazones was prepared and screened against various clinically important Gram-positive bacteria. One compound containing an ethylene spacer and a 5-nitrofuryl group was found to have promising activity against Clostridium difficile.
View Article and Find Full Text PDFAs part of a study into antimycobacterial compounds a set of phenolic N1-benzylidene-pyridinecarboxamidrazones was prepared and evaluated. This report describes the unexpected discovery of a potent compound with a pronounced selectivity for Gram-positive bacteria over Gram-negative micro-organisms. In addition, this compound is active against various drug-resistant Gram-positive bacteria.
View Article and Find Full Text PDFSince molecularly imprinted polymers (MIPs) are designed to have a memory for their molecular templates it is easy to draw parallels with the affinity between biological receptors and their substrates. Could MIPs take the place of natural receptors in the selection of potential drug molecules from synthetic compound libraries? To answer that question this review discusses the results of MIP studies which attempt to emulate natural receptors. In addition the possible use of MIPs to guide a compound library synthesis towards a desired biological activity is highlighted.
View Article and Find Full Text PDFA series of fluorescent molecularly imprinted polymers has been prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. Such polymers would have the possibility to form the sensing element in a high-throughput assay for the prediction of CYP2D6 affinity. The imprinted polymers possessed binding-dependent fluorescence.
View Article and Find Full Text PDFA linear co-polymer of hexyl acrylate and quinine acrylate was prepared anchored to cellulose filtration membranes. These were used to probe quenching of the tethered fluorophore by test compounds in solution for the validation of imprinted polymer fluorescence studies. The results are compared with simple solution phase quenching studies and also for two membrane-bound imprinted polymers containing the same fluorophore.
View Article and Find Full Text PDFA series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1mM) or (NAC, 1mM) showed abolition of INH toxicity.
View Article and Find Full Text PDFDerivatives of salicylic acid have been synthesized as potential lipoxygenase inhibitors. Agents containing a phenolic dihydroxy moiety showed potent (IC(50)10(-6)-10(-7) M) inhibition of the growth of murine colonic tumour cells in vitro, and were effective inhibitors of 5-, 12- and 15-lipoxygenase in intact cells. The catechols were also potent inhibitors of rabbit reticulocyte 15-lipoxygenase (IC(50) approximately 1 microM).
View Article and Find Full Text PDFA series of N(1)-benzylidene pyridine-2-carboxamidrazone anti-tuberculosis compounds has been evaluated for their cytotoxicity using human mononuclear leucocytes (MNL) as target cells. All eight compounds were significantly more toxic than dimethyl sulphoxide control and isoniazid (INH) with the exception of a 4-methoxy-3-(2-phenylethyloxy) derivative, which was not significantly different in toxicity compared with INH. The most toxic agent was an ethoxy derivative, followed by 3-nitro, 4-methoxy, dimethylpropyl, 4-methylbenzyloxy, 3-methoxy-4-(-2-phenylethyloxy) and 4-benzyloxy in rank order.
View Article and Find Full Text PDF