Plants remove carbon dioxide from the atmosphere through photosynthesis. Because agriculture's productivity is based on this process, a combination of technologies to reduce emissions and enhance soil carbon storage can allow this sector to achieve net negative emissions while maintaining high productivity. Unfortunately, current row-crop agricultural practice generates about 5% of greenhouse gas emissions in the United States and European Union.
View Article and Find Full Text PDFInnate lymphoid cells (ILCs) are critical in innate immune responses to pathogens and lymphoid organ development. Similar to CD4(+) T helper (Th) cell subsets, ILC subsets positive for interleukin-7 receptor α (IL-7Rα) produce distinct sets of effector cytokines. However, the molecular control of IL-7Rα(+) ILC development and maintenance is unclear.
View Article and Find Full Text PDFThe transcription factor GATA3 plays an essential role during T cell development and T helper 2 (Th2) cell differentiation. To understand GATA3-mediated gene regulation, we identified genome-wide GATA3 binding sites in ten well-defined developmental and effector T lymphocyte lineages. In the thymus, GATA3 directly regulated many critical factors, including Th-POK, Notch1, and T cell receptor subunits.
View Article and Find Full Text PDFBehaviors observed at the cellular level such as development and acquisition of effector functions by immune cells result from transcriptional changes. The biochemical mediators of transcription are sequence-specific transcription factors (TFs), chromatin modifying enzymes, and chromatin, the complex of DNA and histone proteins. Covalent modification of DNA and histones, also termed epigenetic modification, influences the accessibility of target sequences for transcription factors on chromatin and the expression of linked genes required for immune functions.
View Article and Find Full Text PDFAlthough the 3 isoforms of Akt regulate cell growth, proliferation, and survival in a wide variety of cell types, their role in B-cell development is unknown. We assessed B-cell maturation in the bone marrow (BM) and periphery in chimeras established with fetal liver progenitors lacking Akt1 and/or Akt2. We found that the generation of marginal zone (MZ) and B1 B cells, 2 key sources of antibacterial antibodies, was highly dependent on the combined expression of Akt1 and Akt2.
View Article and Find Full Text PDFWe have identified a distinctive lymphoid-restricted progenitor population in adult mouse bone marrow based on a unique c-Kit(-)Sca-1(high)Flt3(+) AA4(+) surface phenotype. These cells are highly lymphoid biased and rapidly generate B and T cells after adoptive transfer. However, whereas previously described lymphoid progenitors such as common lymphoid progenitors express TdT and relatively high levels of RAG2, and are enriched for cells with an active V(D)J recombinase, Flt3(+) AA4(+) cells within the c-Kit(-)Sca-1(high) bone marrow fraction are TdT(-), are RAG2(low), and do not display evidence for ongoing or past recombinase activity.
View Article and Find Full Text PDFAll blood cell types including mature B cells derive from pluripotent hematopoietic stem cells. The developmental cues responsible for guiding multipotent cells to the B cell fate remain to be fully elucidated. During recent years, it has become clear that firm commitment to the B cell fate requires the active suppression of differentiation potentials for alternative fates.
View Article and Find Full Text PDFAlternative lineage restriction and B cell fate commitment require the transcription factor Pax5, but the function of early B cell factor (EBF) in these processes remains mostly unexplored. Here we show that in the absence of EBF, 'expandable' and clonal lymphoid progenitor cells retained considerable myeloid potential. Conversely, ectopic expression of EBF in multipotential progenitor cells directed B cell generation at the expense of myeloid cell fates.
View Article and Find Full Text PDF