Advances in microscopy and fluorescent reporters have allowed us to detect the onset of gene expression on a cell-by-cell basis in a systemic fashion. This information, however, is often encoded in large repositories of images, and developing ways to extract this spatiotemporal expression data is a difficult problem that often uses complex domain-specific methods for each individual data set. We present a more unified approach that incorporates general previous information into a hierarchical probabilistic model to extract spatiotemporal gene expression from 4D confocal microscopy images of developing Caenorhabditis elegans embryos.
View Article and Find Full Text PDFTo fully describe gene expression dynamics requires the ability to quantitatively capture expression in individual cells over time. Automated systems for acquiring and analyzing real-time images are needed to obtain unbiased data across many samples and conditions. We developed a microfluidics device, the RootArray, in which 64 Arabidopsis thaliana seedlings can be grown and their roots imaged by confocal microscopy over several days without manual intervention.
View Article and Find Full Text PDFAdvances in reporters for gene expression have made it possible to document and quantify expression patterns in 2D-4D. In contrast to microarrays, which provide data for many genes but averaged and/or at low resolution, images reveal the high spatial dynamics of gene expression. Developing computational methods to compare, annotate, and model gene expression based on images is imperative, considering that available data are rapidly increasing.
View Article and Find Full Text PDFMotivation: Recent advancements in high-throughput imaging have created new large datasets with tens of thousands of gene expression images. Methods for capturing these spatial and/or temporal expression patterns include in situ hybridization or fluorescent reporter constructs or tags, and results are still frequently assessed by subjective qualitative comparisons. In order to deal with available large datasets, fully automated analysis methods must be developed to properly normalize and model spatial expression patterns.
View Article and Find Full Text PDFMotivation: Confocal microscopy has long provided qualitative information for a variety of applications in molecular biology. Recent advances have led to extensive image datasets, which can now serve as new data sources to obtain quantitative gene expression information. In contrast to microarrays, which usually provide data for many genes at one time point, these image data provide us with expression information for only one gene, but with the advantage of high spatial and/or temporal resolution, which is often lostin microarray samples.
View Article and Find Full Text PDF