GABA and GABA-receptors (GABA-Rs) play major roles in neurodevelopment and neurotransmission in the central nervous system (CNS). There has been a growing appreciation that GABA-Rs are also present on most immune cells. Studies in the fields of autoimmune disease, cancer, parasitology, and virology have observed that GABA-R ligands have anti-inflammatory actions on T cells and antigen-presenting cells (APCs), while also enhancing regulatory T cell (Treg) responses and shifting APCs toward anti-inflammatory phenotypes.
View Article and Find Full Text PDFThere is an urgent need for new approaches to limit the severity of coronavirus infections. Many cells of the immune system express receptors for the neurotransmitter γ-aminobutyric acid (GABA), and GABA-receptor (GABA-R) agonists have anti-inflammatory effects. Lung epithelial cells also express GABA-Rs, and GABA-R modulators have been shown to limit acute lung injuries.
View Article and Find Full Text PDFMost multiple sclerosis (MS) patients given currently available disease-modifying drugs (DMDs) experience progressive disability. Accordingly, there is a need for new treatments that can limit the generation of new waves T cell autoreactivity that drive disease progression. Notably, immune cells express GABA-receptors (GABA-Rs) whose activation has anti-inflammatory effects such that GABA administration can ameliorate disease in models of type 1 diabetes, rheumatoid arthritis, and COVID-19.
View Article and Find Full Text PDFSome immune system cells express type A and/or type B γ-aminobutyric acid receptors (GABA-Rs and/or GABA-Rs). Treatment with GABA, which activates both GABA-Rs and GABA-Rs), and/or a GABA-R-specific agonist inhibits disease progression in mouse models of type 1 diabetes (T1D), multiple sclerosis, rheumatoid arthritis, and COVID-19. Little is known about the clinical potential of specifically modulating GABA-Rs.
View Article and Find Full Text PDFThere is an urgent need for new treatments to prevent and ameliorate severe illness and death induced by SARS-CoV-2 infection in COVID-19 patients. The coronavirus mouse hepatitis virus (MHV)-1 causes pneumonitis in mice which shares many pathological characteristics with human SARS-CoV infection. Previous studies have shown that the amino acid gamma-aminobutyric acid (GABA) has anti-inflammatory effects.
View Article and Find Full Text PDFImmune cells express γ-aminobutyric acid receptors (GABA-R), and GABA administration can inhibit effector T cell responses in models of autoimmune disease. The pharmacokinetic properties of GABA, however, may be suboptimal for clinical applications. The amino acid homotaurine is a type A GABA-R (GABA-R) agonist with good pharmacokinetics and appears safe for human consumption.
View Article and Find Full Text PDFA major goal of T1D research is to develop new approaches to increase -cell mass and control autoreactive T cell responses. GABA-receptors (GABA-Rs) are promising drug targets in both those regards due to their abilities to promote -cell replication and survival, as well as inhibit autoreactive T cell responses. We previously showed that positive allosteric modulators (PAMs) of GABA-Rs could promote rat -cell line INS-1 and human islet cell replication .
View Article and Find Full Text PDFThere has been considerable debate as to whether obesity can act as an accelerator of type 1 diabetes (T1D). We assessed this possibility using transgenic mice (MIP-TF mice) whose ß-cells express enhanced green fluorescent protein (EGFP). Infecting these mice with EGFP-expressing murine herpes virus-68 (MHV68-EGFP) caused occasional transient elevation in their blood glucose, peri-insulitis, and Th1 responses to EGFP which did not spread to other ß-cell antigens.
View Article and Find Full Text PDFThere is a need for treatments that can safely promote regulatory lymphocyte responses. T cells express GABA receptors (GABA-Rs) and GABA administration can inhibit Th1-mediated processes such as type 1 diabetes and rheumatoid arthritis in mouse models. Whether GABA-R agonists can also inhibit Th17-driven processes such as experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), is an open question.
View Article and Find Full Text PDFThe activation of -cell's A- and B-type gamma-aminobutyric acid receptors (GABA-Rs and GABA-Rs) can promote their survival and replication, and the activation of -cell GABA-Rs promotes their conversion into -cells. However, GABA and the most clinically applicable GABA-R ligands may be suboptimal for the long-term treatment of diabetes due to their pharmacological properties or potential side-effects on the central nervous system (CNS). Lesogaberan (AZD3355) is a peripherally restricted high-affinity GABA-R-specific agonist, originally developed for the treatment of gastroesophageal reflux disease (GERD) that appears to be safe for human use.
View Article and Find Full Text PDFA key goal of diabetes research is to develop treatments to safely promote human ß-cell replication. It has recently become appreciated that activation of γ-aminobutyric acid receptors (GABA-Rs) on ß-cells can promote their survival and replication. A number of positive allosteric modulators (PAMs) that enhance GABA's actions on neuronal GABA-Rs are in clinical use.
View Article and Find Full Text PDFAntigen-based therapies (ABTs) fail to restore normoglycemia in newly diabetic NOD mice, perhaps because too few β-cells remain by the time that ABT-induced regulatory responses arise and spread. We hypothesized that combining a fast-acting anti-inflammatory agent with an ABT could limit pathogenic responses while ABT-induced regulatory responses arose and spread. γ-Aminobutyric acid (GABA) administration can inhibit inflammation, enhance regulatory T-cell (Treg) responses, and promote β-cell replication in mice.
View Article and Find Full Text PDFγ-Aminobutyric acid (GABA) has been shown to inhibit apoptosis of rodent β-cells in vitro. In this study, we show that activation of GABAA receptors (GABAA-Rs) or GABAB-Rs significantly inhibits oxidative stress-related β-cell apoptosis and preserves pancreatic β-cells in streptozotocin-rendered hyperglycemic mice. Moreover, treatment with GABA, or a GABAA-R- or GABAB-R-specific agonist, inhibited human β-cell apoptosis following islet transplantation into NOD/scid mice.
View Article and Find Full Text PDFWe previously showed that, in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), vaccination with bacillus Calmette-Guerin (BCG) prior to MPTP exposure limited the loss of striatal dopamine (DA) and dopamine transporter (DAT) and prevented the activation of nigral microglia. Here, we conducted BCG dose studies and investigated the mechanisms underlying BCG vaccination's neuroprotective effects in this model. We found that a dose of 1 × 10(6) cfu BCG led to higher levels of striatal DA and DAT ligand binding (28% and 42%, respectively) in BCG-vaccinated vs.
View Article and Find Full Text PDFWe studied cultured hippocampal neurons from embryonic wildtype, major histocompatibility complex class I (MHCI) heavy chain-deficient (K(b)D(b)-/-) and NSE-D(b) (which have elevated neuronal MHCI expression) C57BL/6 mice. K(b)D(b)-/- neurons displayed slower neuritogenesis and establishment of polarity, while NSE-D(b) neurons had faster neurite outgrowth, more primary neurites, and tended to have accelerated polarization. Additional studies with ß2M-/- neurons, exogenous ß2M, and a self-MHCI monomer suggest that free heavy chain cis interactions with other surface molecules can promote neuritogenesis while tripartite MHCI interactions with classical MHCI receptors can inhibit axon outgrowth.
View Article and Find Full Text PDFAdipocyte and β-cell dysfunction and macrophage-related chronic inflammation are critical for the development of obesity-related insulin resistance and type 2 diabetes mellitus (T2DM), which can be negatively regulated by Tregs. Our previous studies and those of others have shown that activation of γ-aminobutyric acid (GABA) receptors inhibits inflammation in mice. However, whether GABA could modulate high fat diet (HFD)-induced obesity, glucose intolerance and insulin resistance has not been explored.
View Article and Find Full Text PDFAntigen-based therapies (ABTs) very effectively prevent the development of type 1 diabetes (T1D) when given to young nonobese diabetic (NOD) mice, however, they have little or no ability to reverse hyperglycemia in newly diabetic NOD mice. More importantly, ABTs have not yet demonstrated an ability to effectively preserve residual ß-cells in individuals newly diagnosed with type 1 diabetes (T1D). Accordingly, there is great interest in identifying new treatments that can be combined with ABTs to safely protect ß-cells in diabetic animals.
View Article and Find Full Text PDFCurrent treatments for rheumatoid arthritis (RA) have long-term side effects such that new treatments are needed that can safely help manage the disease. There is a growing appreciation that GABA receptors (GABA-Rs) on immune cells provide new targets that can be used to modulate immune cell activity. Here, we show for the first time that activation of peripheral GABA-Rs can inhibit the development of disease in the collagen-induced arthritis (CIA) mouse model of RA.
View Article and Find Full Text PDFThe neurobiological activities of classical major histocompatibility class I (MHCI) molecules are just beginning to be explored. To further examine MHCI's actions during the formation of neuronal connections, we cultured embryonic mouse retina explants a short distance from wildtype thalamic explants, or thalami from transgenic mice (termed "NSE-Db") whose neurons express higher levels of MHCI. While retina neurites extended to form connections with wildtype thalami, we were surprised to find that retina neurite outgrowth was very stunted in regions proximal to NSE-Db thalamic explants, suggesting that a diffusible factor from these thalami inhibited retina neurite outgrowth.
View Article and Find Full Text PDFObjective: β-Cells that express an imaging reporter have provided powerful tools for studying β-cell development, islet transplantation, and β-cell autoimmunity. To further expedite diabetes research, we generated transgenic C57BL/6 "MIP-TF" mice that have a mouse insulin promoter (MIP) driving the expression of a trifusion (TF) protein of three imaging reporters (luciferase/enhanced green fluorescent protein/HSV1-sr39 thymidine kinase) in their β-cells. This should enable the noninvasive imaging of β-cells by charge-coupled device (CCD) and micro-positron emission tomography (PET), as well as the identification of β-cells at the cellular level by fluorescent microscopy.
View Article and Find Full Text PDFThere is a growing interest in using vaccination with CNS antigens to induce autoreactive T cell responses that home to damaged areas in the CNS and ameliorate neurodegenerative disease. Neuroprotective vaccine studies have focused on administering oligodendrocyte antigens or Copaxone® in complete Freund's adjuvant (CFA). Theoretical considerations, however, suggest that vaccination with a neuronal antigen may induce more robust neuroprotective immune responses.
View Article and Find Full Text PDF