Publications by authors named "Daniel L Flynn"

Purpose: Breast cancer cells disseminate to distant sites via Tumor Microenvironment of Metastasis (TMEM) doorways. The TIE2 inhibitor rebastinib blocks TMEM doorway function in the PyMT mouse model of breast cancer. We aimed to assess the safety and pharmacodynamics of rebastinib plus paclitaxel or eribulin in patients with HER2-negative metastatic breast cancer (MBC).

View Article and Find Full Text PDF

Mutational activation of occurs commonly in lung carcinogenesis and, with the recent U.S. Food and Drug Administration approval of covalent inhibitors of KRAS such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

An immunosuppressive tumor microenvironment promotes tumor growth and is one of the main factors limiting the response to cancer immunotherapy. We have previously reported that inhibition of vacuolar protein sorting 34 (VPS34), a crucial lipid kinase in the autophagy/endosomal trafficking pathway, decreases tumor growth in several cancer models, increases infiltration of immune cells and sensitizes tumors to anti-programmed cell death protein 1/programmed cell death 1 ligand 1 therapy by upregulation of C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine 10 (CXCL10) chemokines. The purpose of this study was to investigate the signaling mechanism leading to the VPS34-dependent chemokine increase.

View Article and Find Full Text PDF

Mutational activation of occurs commonly in lung carcinogenesis and, with the recent FDA approval of covalent inhibitors of KRAS such as sotorasib or adagrasib, KRAS oncoproteins are important pharmacological targets in non-small cell lung cancer (NSCLC). However, not all KRAS -driven NSCLCs respond to these inhibitors, and the emergence of drug resistance in those patients that do respond can be rapid and pleiotropic. Hence, based on a backbone of covalent inhibition of KRAS , efforts are underway to develop effective combination therapies.

View Article and Find Full Text PDF

Based on the structure of an early lead identified in Deciphera's proprietary compound collection of switch control kinase inhibitors and using a combination of medicinal chemistry guided structure activity relationships and structure-based drug design, a novel series of potent acyl urea-based CSF1R inhibitors was identified displaying high selectivity for CSF1R versus the other members of the Type III receptor tyrosine kinase (RTK) family members (KIT, PDGFR-α, PDGFR-β, and FLT3), VEGFR2 and MET. Based on in vitro biology, in vitro ADME and in vivo PK/PD studies, compound 10 was selected as an advanced lead for Deciphera's CSF1R research program.

View Article and Find Full Text PDF

Based on knowledge of kinase switch-control inhibition and using a combination of structure-based drug design and standard medicinal chemistry principles, we identified a novel series of dihydropyrimidone-based CSF1R kinase inhibitors displaying exquisite selectivity for CSF1R versus a large panel of kinases and non-kinase protein targets. Starting with lead compound 3, an SAR optimization campaign led to the discovery of vimseltinib (DCC-3014; compound 20) currently undergoing clinical evaluation for the treatment of Tenosynovial Giant Cell Tumor (TGCT), a locally aggressive benign tumor associated with substantial morbidity. 2021 Elsevier ltd.

View Article and Find Full Text PDF

Macrophages can be co-opted to contribute to neoplastic, neurologic, and inflammatory diseases. Colony-stimulating factor 1 receptor (CSF1R)-dependent macrophages and other inflammatory cells can suppress the adaptive immune system in cancer and contribute to angiogenesis, tumor growth, and metastasis. CSF1R-expressing osteoclasts mediate bone degradation in osteolytic cancers and cancers that metastasize to bone.

View Article and Find Full Text PDF

The majority of gastrointestinal stromal tumors (GIST) harbor constitutively activating mutations in KIT tyrosine kinase. Imatinib, sunitinib, and regorafenib are available as first-, second-, and third-line targeted therapies, respectively, for metastatic or unresectable KIT-driven GIST. Treatment of patients with GIST with KIT kinase inhibitors generally leads to a partial response or stable disease but most patients eventually progress by developing secondary resistance mutations in KIT.

View Article and Find Full Text PDF

Mutations in ERK signaling drive a significant percentage of malignancies. LY3009120, a pan-RAF and dimer inhibitor, has preclinical activity in - and -mutated cell lines including -mutant melanoma resistant to BRAF inhibitors. This multicenter, open-label, phase I clinical trial (NCT02014116) consisted of part A (dose escalation) and part B (dose confirmation) in patients with advanced/metastatic cancer.

View Article and Find Full Text PDF

Ripretinib (DCC-2618) was designed to inhibit the full spectrum of mutant KIT and PDGFRA kinases found in cancers and myeloproliferative neoplasms, particularly in gastrointestinal stromal tumors (GISTs), in which the heterogeneity of drug-resistant KIT mutations is a major challenge. Ripretinib is a "switch-control" kinase inhibitor that forces the activation loop (or activation "switch") into an inactive conformation. Ripretinib inhibits all tested KIT and PDGFRA mutants, and notably is a type II kinase inhibitor demonstrated to broadly inhibit activation loop mutations in KIT and PDGFRA, previously thought only achievable with type I inhibitors.

View Article and Find Full Text PDF

Tumor-infiltrating myeloid cells promote tumor progression by mediating angiogenesis, tumor cell intravasation, and metastasis, which can offset the effects of chemotherapy, radiation, and antiangiogenic therapy. Here, we show that the kinase switch control inhibitor rebastinib inhibits Tie2, a tyrosine kinase receptor expressed on endothelial cells and protumoral Tie2-expressing macrophages in mouse models of metastatic cancer. Rebastinib reduces tumor growth and metastasis in an orthotopic mouse model of metastatic mammary carcinoma through reduction of Tie2 myeloid cell infiltration, antiangiogenic effects, and blockade of tumor cell intravasation mediated by perivascular Tie2/Vegf-A macrophages in the tumor microenvironment of metastasis (TMEM).

View Article and Find Full Text PDF

A vailable tyrosine kinase inhibitors for chronic myeloid leukemia bind in an adenosine 5'-triphosphate-binding pocket and are affected by evolving mutations that confer resistance. Rebastinib was identified as a switch control inhibitor of BCR-ABL1 and FLT3 and may be active against resistant mutations. A Phase 1, first-in-human, single-agent study investigated rebastinib in relapsed or refractory chronic or acute myeloid leukemia.

View Article and Find Full Text PDF

Background: Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy.

View Article and Find Full Text PDF

LY3009120 is a pan-RAF and RAF dimer inhibitor that inhibits all RAF isoforms and occupies both protomers in RAF dimers. Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities. LY3009120 induces BRAF-CRAF dimerization but inhibits the phosphorylation of downstream MEK and ERK, suggesting that it effectively inhibits the kinase activity of BRAF-CRAF heterodimers.

View Article and Find Full Text PDF

Altiratinib (DCC-2701) was designed based on the rationale of engineering a single therapeutic agent able to address multiple hallmarks of cancer (1). Specifically, altiratinib inhibits not only mechanisms of tumor initiation and progression, but also drug resistance mechanisms in the tumor and microenvironment through balanced inhibition of MET, TIE2 (TEK), and VEGFR2 (KDR) kinases. This profile was achieved by optimizing binding into the switch control pocket of all three kinases, inducing type II inactive conformations.

View Article and Find Full Text PDF

The RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with RAS mutations in preclinical models and are contraindicated for treatment of cancer patients with BRAF WT background, including patients with KRAS or NRAS mutations.

View Article and Find Full Text PDF

Acquired point mutations within the BCR-ABL kinase domain represent a common mechanism of resistance to ABL inhibitor therapy in patients with chronic myeloid leukemia (CML). The BCR-ABL(T315I) mutant is highly resistant to imatinib, nilotinib, and dasatinib, and is frequently detected in relapsed patients. This critical gap in resistance coverage drove development of DCC-2036, an ABL inhibitor that binds the switch control pocket involved in conformational regulation of the kinase domain.

View Article and Find Full Text PDF

Acquired resistance to ABL1 tyrosine kinase inhibitors (TKIs) through ABL1 kinase domain mutations, particularly the gatekeeper mutant T315I, is a significant problem for patients with chronic myeloid leukemia (CML). Using structure-based drug design, we developed compounds that bind to residues (Arg386/Glu282) ABL1 uses to switch between inactive and active conformations. The lead "switch-control" inhibitor, DCC-2036, potently inhibits both unphosphorylated and phosphorylated ABL1 by inducing a type II inactive conformation, and retains efficacy against the majority of clinically relevant CML-resistance mutants, including T315I.

View Article and Find Full Text PDF

The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR) and MET are activated in subsets of mesothelioma, suggesting that these kinases might represent novel therapeutic targets in this notoriously chemotherapy-resistant cancer. However, clinical trials have shown little activity for EGFR inhibitors in mesothelioma. Despite the evidence for RTK activation in mesothelioma pathogenesis, it is unclear whether transforming activity is dependent on an individual kinase oncoprotein or the coordinated activity of multiple kinases.

View Article and Find Full Text PDF

A monomer-on-monomer (MoM) Mitsunobu reaction utilizing norbornenyl-tagged (Nb-tagged) reagents is reported, whereby purification was rapidly achieved by employing ring-opening metathesis polymerization, which was initiated by any of three methods utilizing Grubbs catalyst: (i) free catalyst in solution, (ii) surface-initiated catalyst-armed silica, or (iii) surface-initiated catalyst-armed Co/C magnetic nanoparticles.

View Article and Find Full Text PDF

Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity.

View Article and Find Full Text PDF

Starting from an initial HTS screening lead, a novel series of C(5)-substituted diaryl pyrazoles were developed that showed potent inhibition of p38alpha kinase. Key to this outcome was the switch from a pyridyl to pyrimidine at the C(4)-position leading to analogs that were potent in human whole blood based cell assay as well as in a number of animal efficacy models for rheumatoid arthritis. Ultimately, we identified a clinical candidate from this substrate; SD-0006.

View Article and Find Full Text PDF

A new high-load, soluble oligomeric dichlorotriazine (ODCT) reagent derived from ring-opening metathesis polymerization (ROMP) is reported as an effective coupling reagent, scavenger of nucleophilic species, and activator of DMSO for the classic Swern oxidations. Two variants of this reagent (2G)ODCT 4 and (1G)ODCT 16, possessing theoretical loads of 5.3 and 7.

View Article and Find Full Text PDF

The development of high-load, oligomeric benzylsulfonium salts, generated via ring-opening metathesis polymerization, and their utility in facile benzylations of various nucleophiles is reported. These oligomeric sulfonium salts exist as free-flowing powders and are stable at room temperature. After the benzylation event, purification is attained via simple dry load/filtration, followed by solvent removal to deliver products in excellent yield and purity.

View Article and Find Full Text PDF

A series of pyrrolizidine esters, amides, and ureas was prepared and tested for 5-HT(4) and 5-HT(3) receptor binding, 5-HT(4) receptor agonism in the rat tunica muscularis mucosae (TMM) assay, and for 5-HT(3) receptor-mediated functional antagonism in the Bezold-Jarisch reflex assay. Several pyrrolizidine derivatives were identified with high affinity for the 5-HT(4) receptor, including benzamide 12a (SC-53116), a potent and selective 5-HT(4) partial agonist that exhibits efficacy in promoting antral contractions and activity in promoting gastric emptying in canine models. Also discovered were 5-HT(4) receptor antagonists, including imidazopyridine amide 12h (SC-53606), which is a potent and selective 5-HT(4) receptor antagonist with a pA(2) value of 8.

View Article and Find Full Text PDF