Publications by authors named "Daniel Kuppers"

Human CD34+ hematopoietic stem and progenitor cells (HSPCs) are a standard source of cells for clinical HSC transplantations as well as experimental xenotransplantation to generate "humanized mice". To further extend the range of applications of these humanized mice, we developed a protocol to efficiently edit the genomes of human CD34+ HSPCs before transplantation. In the past, manipulating HSPCs has been complicated by the fact that they are inherently difficult to transduce with lentivectors, and rapidly lose their stemness and engraftment potential during in vitro culture.

View Article and Find Full Text PDF

Background: Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling.

Methods: We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma.

View Article and Find Full Text PDF

Many of the regulatory features governing erythrocyte specification, maturation, and associated disorders remain enigmatic. To identify new regulators of erythropoiesis, we utilize a functional genomic screen for genes affecting expression of the erythroid marker CD235a/GYPA. Among validating hits are genes coding for the N-methyladenosine (mA) mRNA methyltransferase (MTase) complex, including, METTL14, METTL3, and WTAP.

View Article and Find Full Text PDF

Clinical trials of high-dose androgen (HDA) therapy for prostate cancer (PC) have shown promising efficacy but are limited by lack of criteria to identify likely responders. To elucidate factors that govern the growth-repressive effects of HDAs, we applied an unbiased integrative approach using genetic screens and transcriptional profiling of PC cells with or without demonstrated phenotypic sensitivity to androgen-mediated growth repression. Through this comprehensive analysis, we identified genetic events and related signaling networks that determine the response to both HDA and androgen withdrawal.

View Article and Find Full Text PDF

The miR-106a~363 cluster encodes 6 miRNAs on the X-chromosome which are abundant in blood cells and overexpressed in a variety of malignancies. The constituent miRNA of miR-106a~363 have functional activities that are predicted to be both oncogenic and tumor suppressive, yet little is known about their physiological functions . Mature miR-106a~363 () miRNAs are processed from an intragenic, non-protein encoding gene referred to as Xpcl1 (or ), situated at an X-chromosomal locus frequently targeted by retroviruses in murine lymphomas.

View Article and Find Full Text PDF

Mice lacking the p27(Kip1) Cdk inhibitor (Cdkn1b) exhibit increased susceptibility to lymphomas from the Maloney murine leukemia virus (M-MuLV), and exhibit a high frequency of viral integrations at Xpcl1 (Kis2), a locus on the X-chromosome. Xpcl1 encodes miR-106a~363, a cluster of microRNAs that are expressed in response to adjacent retroviral integrations. We report the first large-scale profile of microRNA expression in MuLV-induced lymphomas, in combination with microarray gene expression analysis.

View Article and Find Full Text PDF

Foamy viruses (FV) comprise a subfamily of retroviruses. Orthoretroviruses, such as human immunodeficiency virus type 1, synthesize Gag and Pol from unspliced genomic RNA. However, FV Pol is expressed from a spliced mRNA independently of Gag.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus expressing latent antigens critical for pathogenesis. The mechanism by which KSHV mediates oncogenesis has not been fully elucidated. Notch signaling is an evolutionarily conserved pathway controlling diverse events related to development, proliferation, and tissue homeostasis.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system.

View Article and Find Full Text PDF

Epstein-Barr virus latent protein EBNA3C has been shown to bind Nm23-H1, a known suppresser of cell migration and metastasis and a regulator of the guanine exchange factor Tiam-1. This interaction results in cellular translocation of Nm23-H1 to the nucleus and suppression of the antimigratory effect in vitro. Furthermore, these proteins can synergistically increase transcription of a basal promoter when targeted to DNA by fusion to a Gal4 DNA binding domain.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent contributing to development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman desease. Following primary infection, latency is typically established. However, the mechanism by which KSHV establishes latency is not understood.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the major biological cofactor contributing to development of Kaposi's sarcoma. KSHV establishes a latent infection in human B cells expressing the latency-associated nuclear antigen (LANA), a critical factor in the regulation of viral latency. LANA controls KSHV latent infection through repression of RTA, an activator of many lytic promoters.

View Article and Find Full Text PDF

Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV, also designated human herpesvirus 8) can establish a latent infection in the infected host. During latency a small number of genes are expressed. One of those genes encodes latency-associated nuclear antigen (LANA), which is constitutively expressed in cells during latent as well as lytic infection.

View Article and Find Full Text PDF