Publications by authors named "Daniel Kiper"

Transcranial random noise stimulation (tRNS) has been shown to significantly improve visual perception. Previous studies demonstrated that tRNS delivered over cortical areas acutely enhances visual contrast detection of weak stimuli. However, it is currently unknown whether tRNS-induced signal enhancement could be achieved within different neural substrates along the retino-cortical pathway.

View Article and Find Full Text PDF

Background: Virtual reality-based training has found increasing use in neurorehabilitation to improve upper limb training and facilitate motor recovery.

Objective: The aim of this study was to directly compare virtual reality-based training with conventional therapy.

Methods: In a multi-center, parallel-group randomized controlled trial, patients at least 6 months after stroke onset were allocated either to an experimental group (virtual reality-based training) or a control group receiving conventional therapy (16x45 minutes within 4 weeks).

View Article and Find Full Text PDF

Visually guided finger movements include online feedback of current effector position to guide target approach. This visual feedback may be scaled or otherwise distorted by unpredictable perturbations. Although adjustments to visual feedback scaling have been studied before, the underlying brain activation differences between upscaling (visual feedback larger than real movement) and downscaling (feedback smaller than real movement) are currently unknown.

View Article and Find Full Text PDF

When stimuli are luminance-defined, the visual system is known to prefer those that are radially oriented with respect to the point of fixation over tangentially oriented ones (the radial bias effect). In two contrast detection experiments and an orientation discrimination experiment, we investigated whether the radial bias effect also exists for chromatic stimuli. The contrast detection experiments revealed the radial bias effect to be color-specific; the effect was present for isoluminant red-green stimuli but absent or in the opposite direction for blue-yellow stimuli with, respectively, low (0.

View Article and Find Full Text PDF

Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI.

View Article and Find Full Text PDF

To what extent does the visual system process color and form separately? Proponents of the segregation view claim that distinct regions of the cortex are dedicated to each of these two dimensions separately. However, evidence is accumulating that color and form processing may, at least to some extent, be intertwined in the brain. In this perspective, we review psychophysical and neurophysiological studies on color and form perception and evaluate their results in light of recent developments in population coding.

View Article and Find Full Text PDF

Background: In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery.

Methods/design: The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks).

View Article and Find Full Text PDF

Purpose: To evaluate feasibility and neurophysiological changes after virtual reality (VR)-based training of upper limb (UL) movements.

Method: Single-case A-B-A-design with two male stroke patients (P1:67 y and 50 y, 3.5 and 3 y after onset) with UL motor impairments, 45-min therapy sessions 5×/week over 4 weeks.

View Article and Find Full Text PDF

The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes.

View Article and Find Full Text PDF

Background: Neurorehabilitation interventions to improve lower limb function and neuropathic pain have had limited success in people with chronic, incomplete spinal cord injury (iSCI).

Objective: We hypothesized that intense virtual reality (VR)-augmented training of observed and executed leg movements would improve limb function and neuropathic pain.

Methods: Patients used a VR system with a first-person view of virtual lower limbs, controlled via movement sensors fitted to the patient's own shoes.

View Article and Find Full Text PDF

The Life Science Learning Center (LSLC) was officially founded in 2005. It is a branch of the pre-existing Life Science Zurich, an organization created by and belonging to the University of Zurich and the Swiss Federal Institute of Technology Zurich to promote and support life sciences in several central parts of society. The LSLC's primary goals are to offer educational opportunities for school children as well as continuing education for teachers of the primary and secondary school levels.

View Article and Find Full Text PDF

Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs).

View Article and Find Full Text PDF

It is known that activity in secondary motor areas during observation of human limbs performing actions is affected by the observer's viewpoint, with first-person views generally leading to stronger activation. However, previous neuroimaging studies have displayed limbs in front of the observer, providing an offset view of the limbs without a truly first-person viewpoint. It is unknown to what extent these pseudo-first-person viewpoints have affected the results published to date.

View Article and Find Full Text PDF

Trial-to-trial variability is a well-known issue in brain signals measured using functional near-infrared spectroscopy (fNIRS). We aimed to investigate whether trial-to-trial variability does provide information about individual performance. Seventeen subjects observed a virtual reality grasping task in first-person view while either imagining (motor imagery during observation, MIO) or imitating (motor execution, ME) the movements.

View Article and Find Full Text PDF

Background: Several neurorehabilitation strategies have been introduced over the last decade based on the so-called simulation hypothesis. This hypothesis states that a neural network located in primary and secondary motor areas is activated not only during overt motor execution, but also during observation or imagery of the same motor action. Based on this hypothesis, we investigated the combination of a virtual reality (VR) based neurorehabilitation system together with a wireless functional near infrared spectroscopy (fNIRS) instrument.

View Article and Find Full Text PDF

Human visual cortex contains mechanisms that pool local orientation information over large areas of visual space to support percepts of global form. Initial studies concluded that some of these mechanisms are cue invariant, in that they yield form percepts irrespective of whether the visual signals contain luminance or chromatic information. Later studies reported that these mechanisms are chromatically selective, albeit with a broad tuning in color space.

View Article and Find Full Text PDF

Objective: Rehabilitation of upper-limb sensorimotor function in children with motor dysfunctions is primarily based on movement training. This study developed a virtual-reality based, paediatric interactive therapy system (PITS) that allows children to practice specific movements of the upper limbs with immediate feedback about their motor performance.

Methods: The system was tested on five children with motor dysfunctions over 3 weeks of training.

View Article and Find Full Text PDF

Impaired hand motor function resulting from neurological, psychiatric or orthopaedic disorders affects patients of all ages. Existing hand function assessment methods, e.g.

View Article and Find Full Text PDF

Multi-modal visuo-tactile stimulation of the type performed in the rubber hand illusion can induce the brain to temporarily incorporate external objects into the body image. In this study we show that audio-visual stimulation combined with mental imagery more rapidly elicits an elevated physiological response (skin conductance) after an unexpected threat to a virtual limb, compared to audio-visual stimulation alone. Two groups of subjects seated in front of a monitor watched a first-person perspective view of slow movements of two virtual arms intercepting virtual balls rolling towards the viewer.

View Article and Find Full Text PDF

The grid cells of the rat medial entorhinal cortex (MEC) show an increased firing frequency when the position of the animal correlates with multiple regions of the environment that are arranged in regular triangular grids. Here, we describe an artificial neural network based on a twisted torus topology, which allows for the generation of regular triangular grids. The association of the activity of pre-defined hippocampal place cells with entorhinal grid cells allows for a highly robust-to-noise calibration mechanism, suggesting a role for the hippocampal back-projections to the entorhinal cortex.

View Article and Find Full Text PDF

We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery.

View Article and Find Full Text PDF

The primate's large brain-to-body weight ratio and high complexity are unusual in the animal kingdom. There is compelling evidence that it is an evolutionary adaptation that allows its owner to live a long life because of its competence in solving a wide range of problems. How primates use their brain to achieve such competence is of course of central interest to us.

View Article and Find Full Text PDF

Glass patterns are a valuable tool to study the cortical stages of form perception. We use circular Glass patterns (cGP) to study the relation between form and color vision. The detection of Glass patterns is thought to be carried out in at least two stages.

View Article and Find Full Text PDF

Aftereffects induced by invisible stimuli constitute a powerful tool to investigate what type of neural information processing can occur in the absence of visual awareness. This approach has been successfully used to demonstrate that awareness of oriented gratings or translating stimuli is not necessary to obtain a robust orientation-specific or motion-specific aftereffect. We exploit motion-induced blindness (MIB, Bonneh, Cooperman, & Sagi, 2001) to investigate the related question of the influence of visual awareness on the formation of negative afterimages.

View Article and Find Full Text PDF

The detection of many chromatic stimuli is mediated by mechanisms that sum their inputs linearly. As a result, these mechanisms have a broad range of selectivity in color space, as do the majority of cells in the early stages of visual processing. In extrastriate cortex, there are cells with a narrow tuning in color space.

View Article and Find Full Text PDF