Trapped ions in radio-frequency traps are among the leading approaches for realizing quantum computers, because of high-fidelity quantum gates and long coherence times. However, the use of radio-frequencies presents several challenges to scaling, including requiring compatibility of chips with high voltages, managing power dissipation and restricting transport and placement of ions. Here we realize a micro-fabricated Penning ion trap that removes these restrictions by replacing the radio-frequency field with a 3 T magnetic field.
View Article and Find Full Text PDFUsing a single calcium ion confined in a surface-electrode trap, we study the interaction of electric quadrupole transitions with a passively phase-stable optical standing wave field sourced by photonics integrated within the trap. We characterize the optical fields through spatial mapping of the Rabi frequencies of both carrier and motional sideband transitions as well as ac Stark shifts. Our measurements demonstrate the ability to engineer favorable combinations of sideband and carrier Rabi frequency as well as ac Stark shifts for specific tasks in quantum state control and metrology.
View Article and Find Full Text PDFLarge-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap.
View Article and Find Full Text PDFWe demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion.
View Article and Find Full Text PDFMesoscopic superpositions of distinguishable coherent states provide an analogue of the 'Schrödinger's cat' thought experiment. For mechanical oscillators these have primarily been realized using coherent wavepackets, for which the distinguishability arises as a result of the spatial separation of the superposed states. Here we demonstrate superpositions composed of squeezed wavepackets, which we generate by applying an internal-state-dependent force to a single trapped ion initialized in a squeezed vacuum state with nine decibel reduction in the quadrature variance.
View Article and Find Full Text PDF