ACS Appl Mater Interfaces
January 2018
Efficient n-doping of organic semiconductors requires electron-donating molecules with small ionization energies, making such n-dopants usually sensitive to degradation under air exposure. A workaround consists in the usage of air-stable precursor molecules containing the actual n-doping species. Here, we systematically analyze the doping mechanism of the small-molecule precursor o-MeO-DMBI-Cl, which releases a highly reducing o-MeO-DMBI radical upon thermal evaporation.
View Article and Find Full Text PDFDoping allows us to control the majority and minority charge carrier concentration in organic field-effect transistors. However, the precise mechanism of minority charge carrier generation and transport in organic semiconductors is largely unknown. Here, the injection of minority charge carriers into n-doped organic field-effect transistors is studied.
View Article and Find Full Text PDFOrganic field-effect transistors hold the promise of enabling low-cost and flexible electronics. Following its success in organic optoelectronics, the organic doping technology is also used increasingly in organic field-effect transistors. Doping not only increases device performance, but it also provides a way to fine-control the transistor behavior, to develop new transistor concepts, and even improve the stability of organic transistors.
View Article and Find Full Text PDFWhite organic light-emitting diodes (OLEDs) are promising candidates for future solid-state lighting applications and backplane illumination in large-area displays. One very specific feature of OLEDs, which is currently gaining momentum, is that they can enable tunable white light emission. This feature is conventionally realized either through the vertical stacking of independent OLEDs emitting different colors or in lateral arrangement of OLEDs.
View Article and Find Full Text PDFA key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround.
View Article and Find Full Text PDFAn optimized vertical organic permeable-base transistor (OPBT) competing with the best organic field-effect transistors in performance, while employing low-cost fabrication techniques, is presented. The OPBT stands out by its excellent power efficiency at the highest frequencies.
View Article and Find Full Text PDFOrganic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g.
View Article and Find Full Text PDFIn a recent paper, we discussed the optical properties of a heterostructure consisting of a highly ordered monolayer of quaterrylene (QT), electronically decoupled from the gold substrate by a predeposited epitaxial monolayer of hexa-peri-hexabenzocoronene (HBC). Here we now present the detailed structural investigation of this organic double-layer system. We show that the structure of the heterosystem can be identified as line-on-line coincidence (lol), a new type of epitaxy discovered by us previously for the system 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on HBC on highly oriented pyrolytic graphite (HOPG).
View Article and Find Full Text PDF